tính \(\frac{1}{2}.\frac{5}{6}...\frac{123}{124}\)
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+...+\frac{x+146}{5}=0\)
Tìm x biết :\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+\frac{x+126}{5}=0\)
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+\frac{x+146}{5}=0\)
\(\left(\frac{x+1}{125}+1\right)+\left(\frac{x+2}{124}+1\right)+\left(\frac{x+3}{123}+1\right)+\left(\frac{x+4}{122}+1\right)+\left(\frac{x+146}{5}-4\right)=0\)
\(\frac{x+126}{125}+\frac{x+126}{124}+\frac{x+126}{123}+\frac{x+126}{122}+\frac{x+126}{5}=0\)
\(\left(x+126\right).\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)=0\)
vì \(\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)\ne0\)nên x + 126 = 0 \(\Rightarrow\)x = -126
Tính hợp lí:
a) \(A=\left(\frac{3}{4}-\frac{4}{7}-\frac{5}{6}\right):\left(-\frac{3}{10}+\frac{4}{14}-\frac{-5}{12}\right)\left(\frac{1}{12}-\frac{7}{6}\right)\)
b) 123.(-234+4356-2312)+234.(123-2312)-2312.(-234-123)
a: \(A=\dfrac{63-48-70}{84}:\dfrac{-3\cdot84+4\cdot60+5\cdot70}{840}\cdot\dfrac{1-14}{12}\)
\(=\dfrac{-55}{84}\cdot\dfrac{840}{338}\cdot\dfrac{-13}{12}=\dfrac{55}{1}\cdot\dfrac{10}{338}\cdot\dfrac{13}{12}=\dfrac{275}{156}\)
b: \(=-234\cdot123+123\cdot4356-123\cdot2312+234\cdot123-234\cdot2312+2312\cdot234+2312\cdot123\)
\(=123\cdot4356-123\cdot2312+123\cdot2312=123\cdot4356=535788\)
Tính nhanh:
a) \(2.\frac{3}{7}+\left(\frac{2}{9}-1\frac{3}{7}\right)-\frac{5}{3}:\frac{1}{9}\)
b) \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}\)
c )\(\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right).\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\right)\)
d) \(19\frac{5}{8}:\frac{7}{12}-15\frac{1}{4}:\frac{7}{12}\)
e) \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Tính hợp lý
a) \(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)
b) \(\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(a,\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2=\left(\frac{2}{2.3}\right)^6.\left(\frac{5}{2}\right)^4\)
\(=\frac{1}{3^6}.\frac{5^4}{2^4}=\frac{5^4}{3^6.2^4}\)
\(b,\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{9+7}{12}\right)+\frac{23}{123}:\left(\frac{27-7}{15}\right)\)
\(=\frac{100}{123}:\frac{16}{12}+\frac{23}{123}:\frac{20}{15}\)
\(=\frac{100.12}{123.16}+\frac{23.15}{123.20}\)
\(=\frac{5.5.4.3.4}{41.3.4.4}+\frac{23.3.5}{41.3.4.5}\)
\(=\frac{25}{41}+\frac{23}{164}=\frac{25.4+23}{164}\)
\(=\frac{123}{164}=\frac{3}{4}\)
\(A=\left(1\frac{1}{6}\times\frac{6}{7}\times6:\frac{3}{5}\right):\left(4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{10}\right)\)
\(B=1\frac{13}{15}\times25\%\times3+\left(\frac{8}{15}-\frac{79}{60}\right):1\frac{23}{4}\)
\(C=\frac{123}{4567}\times\frac{1}{8}+\frac{123}{4567}\times\frac{1}{2}-\frac{123}{4567}\times\frac{13}{8}\)
\(D=\frac{10\frac{1}{3}\times\left(24\frac{1}{2}-15\frac{6}{7}\right)-\frac{12}{11}\times\left(\frac{10}{3}-1,75\right)}{\left(\frac{5}{9}-0,25\right)\times\frac{60}{11}+194\frac{8}{99}}\)
5\(\frac{1}{123}\)+6\(\frac{123}{114}\)
tính biểu thức trên
51123 +6123114
=\(\frac{616}{123}+\frac{269}{38}=12,08707745\)
Bài 4 : Tính bằng cách hợp lí nếu có thể
A=0.5+\(\frac{1}{3}\)+0.4+\(\frac{5}{7}\)+\(\frac{1}{6}\)-\(\frac{4}{35}\)
B=-66(\(\frac{1}{2}\)-\(\frac{1}{3}+\frac{1}{11}\))+124*(-37)+63*(-124)
C=\(\frac{8}{9}+\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\)
D=\(\frac{1}{1\cdot3}-\frac{1}{2\cdot4}+\frac{1}{3\cdot5}-\frac{1}{4\cdot6}+....+\frac{1}{97\cdot99}-\frac{1}{98\cdot100}\)
E=\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\)*\(\frac{\frac{1}{3}-0.25+0.2}{1\frac{1}{6}-0.875+0.7}+\frac{6}{7}\)
\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha
1/ Chứng tỏ rằng \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}<1\)
2/ Chứng tỏ rằng \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}<1\)
3/ Rút gọn biểu thức \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
4/ Tính nhanh\(\frac{\frac{4}{2010}+\frac{4}{2011}-\frac{4}{2012}}{\frac{5}{2010}+\frac{5}{2011}-\frac{5}{2012}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
GIÚP ĐƯỢC CÂU NÀO THÌ GIÚP NHÉ, MÌNH TICK CHO
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)=\(\frac{99}{100}<1\)