Những câu hỏi liên quan
DT
Xem chi tiết
PK
19 tháng 6 2018 lúc 10:28

\(F=-\dfrac{1}{1.2}-\dfrac{1}{2.3}-...-\dfrac{1}{2014.2015}-\dfrac{1}{2015.2016}\)

\(\Rightarrow-F=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}\)\(\Rightarrow F=\dfrac{-2015}{2016}\)

Bình luận (0)
HH
19 tháng 6 2018 lúc 10:31

Giải:

\(F=\dfrac{-1}{2016.2015}-\dfrac{1}{2015.2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Leftrightarrow F=-\left(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+\dfrac{1}{2013.2012}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}+\dfrac{1}{2013.2014}+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\dfrac{2015}{2016}\)

Vậy ...

Bình luận (0)
DM
Xem chi tiết
DA
Xem chi tiết
TD
Xem chi tiết
HG
27 tháng 7 2016 lúc 10:13

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=\frac{1}{2016}\)

Bình luận (0)
NH
27 tháng 7 2016 lúc 10:16

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=0+\frac{1}{2016}=\frac{1}{2016}\)

Bình luận (0)
DN
Xem chi tiết
LL
11 tháng 9 2021 lúc 11:12

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)

Bình luận (0)
DT
Xem chi tiết
NT
1 tháng 7 2023 lúc 11:24

=1/2014-(1/1*2+1/2*3+...+1/2013*2014)

=1/2014-(1-1/2+1/2-1/3+...+1/2013-1/2014)

=1/2014-1+1/2014

=1/1007-1=-1006/1007

Bình luận (0)
PT
Xem chi tiết
NN
Xem chi tiết
GH
Xem chi tiết
LL
12 tháng 9 2021 lúc 14:42

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)

Bình luận (0)
GH
12 tháng 9 2021 lúc 14:37

Giúp mình với khocroi

Bình luận (0)
NT
12 tháng 9 2021 lúc 14:39

\(\dfrac{1}{2014}-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-...-\dfrac{1}{2013\cdot2014}\)

\(=\dfrac{1}{2014}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\)

\(=\dfrac{1}{2014}-1+\dfrac{1}{2014}=-\dfrac{1006}{1007}\)

Bình luận (0)