đặt nhân tử chung x2-y2-2x-2y
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
8) x2(x – 2y) + 3x(x – 2y) 9)(5x+2)(x-3)-x(x-3)
10(5x-3)(x+2)-2x(x+2)
8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)
9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)
\(=\left(x-3\right)\left(4x+2\right)\)
=2(2x+1)(x-3)
3: \(=2\left(x+2\right)\left(25x-15-x\right)\)
\(=2\left(x+2\right)\left(24x-15\right)\)
=6(x+2)(8x-5)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
8) x2(x – 2y) + 3x(x – 2y) 9)(5x+2)(x-3)-x(x-3)
10)(5x-3)(x+2)-2x(x+2)
phân tích các đa thức sau thành nhân tử
a x2 - y2 -3x + 3y
b 2x + 2y -x2 + y2
c x2 -16 + y2 + 2xy
cứuuu
a) \(x^2-y^2-3x+3y\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x^2-y^2\right)\)
\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x+y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=x^2+y^2+2xy-16\)
\(=\left(x+y\right)^2-16\)
\(=\left(x+y+4\right)\left(x+y-4\right)\)
a) \(x^2-y^2-3x+3y\)
\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=\left(x+y\right)\left(x-y\right)+2xy-16\)
phân tích đa thức thành nhân tử: x2+2x+1-y2+2y-1
`x^2+2x+1-y^2+2y-1`
`=(x^2+2x+1)-(y^2-2y+1)`
`=(x+1)^2-(y-1)^2`
`=(x+1+y-1)(x+1-y+1)`
`=(x+y)(x-y+2)`
Ta có: \(x^2+2x+1-y^2+2y-1\)
\(=\left(x+1\right)^2-\left(y-1\right)^2\)
\(=\left(x+1-y+1\right)\left(x+1+y-1\right)\)
\(=\left(x-y+2\right)\left(x+y\right)\)
Phân tích đa thức sau thành nhân tử: 2x – 2y – x2 + 2xy – y2
2x – 2y – x2 + 2xy – y2
(Có x2 ; 2xy ; y2 ta liên tưởng đến HĐT (1) hoặc (2))
= (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
(Có x – y là nhân tử chung)
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
Bài 1: Phân tích đa thức thành nhân tử:
a) x2 -2x -y2 +2y
b) 2x +2y -x2 -xy
c) 3x2 -6xy +3y2 -12z2
d) x2 -25 +y2 +2xy
a) x2-2x-y2+2y
=(x2-y2)-(2x-2y)
=(x-y)(x+y)-2(x-y)
=(x-y)(x+y-2)
d) x2-25+y2+2xy
=(x2+y2+2xy)-52
=(x+y)2-52
=(x+y+5)(x+y-5)
đặt nhân tử chung
a 2x +2y -x^2-xy
=(2x+2y)-(x^2+xy)
=2(x+y)-x(x+y)
=(x+y)(2-x)
\(2x+2y-x^2-xy \\ =2\left(x+y\right)-x\left(x+y\right)\\ =\left(x+y\right)\left(2-x\right)\)
Phân tích các đa thức sau nhân tử pp đặt nhân tử chung 2x+2y-x^2-xy Giúp mềnh v
\(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
đặt nhân tử chung
a. x^2 -2x -4y^2 -4 y
b. 2x + 2y -x^2 -xy
\(a,x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(b,2x+2y-x^2-xy\)
\(=\left(2x-x^2\right)+\left(2y-xy\right)\)
\(=x\left(2-x\right)+y\left(2-x\right)\)
\(=\left(x+y\right)\left(2-x\right)\)