Những câu hỏi liên quan
TN
Xem chi tiết
AH
9 tháng 7 2023 lúc 18:10

Lời giải:

$x^2-2x+y^2+4y+5+(2z-3)^2=0$

$\Leftrightarrow (x^2-2x+1)+(y^2+4y+4)+(2z-3)^2=0$

$\Leftrightarrow (x-1)^2+(y+2)^2+(2z-3)^2=0$

Vì $(x-1)^2\geq 0; (y+2)^2\geq 0; (2z-3)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(x-1)^2=(y+2)^2=(2z-3)^2=0$

$\Leftrightarrow x=1; y=-2; z=\frac{3}{2}$

Bình luận (0)
PH
Xem chi tiết
DH
23 tháng 7 2017 lúc 9:17

\(x^2-2x+y^2+4y+5+\left(2z-3\right)^2=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+\left(2z-3\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(2z-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\\\left(2z-3\right)^2\ge0\end{cases}}\) nên \(\left(x-1\right)^2+\left(y+2\right)^2+\left(2z-3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(2z-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=\frac{3}{2}\end{cases}}}\)

Bình luận (0)
TN
Xem chi tiết
NL
6 tháng 2 2021 lúc 20:33

\(\overrightarrow{n_{\left(\alpha\right)}}=\left(1;2;3\right)\)

\(\overrightarrow{n_{\left(P\right)}}=\left(2;4;6\right)\)

\(\overrightarrow{n_{\left(R\right)}}=\left(2;-4;6\right)\)

\(\overrightarrow{n_{\left(Q\right)}}=\left(1;-1;2\right)\)

\(\overrightarrow{n_{\left(S\right)}}=\left(1;-1;2\right)\)

Tích vô hướng của \(\overrightarrow{n_{\left(\alpha\right)}}\) với cả 4 vecto kia đều khác 0 nên ko mặt phẳng nào vuông góc với \(\left(\alpha\right)\)

Bạn coi lại đề bài

Bình luận (0)
NP
Xem chi tiết
EC
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Bình luận (0)
NT
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Bình luận (0)
EC
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
KD
Xem chi tiết
LC
Xem chi tiết
NX
Xem chi tiết
H24
8 tháng 8 2015 lúc 15:51

a) x/-3=y/-7=2x/-6=4y/-28=2x+4y/(-6)+(-28)= 68/-34=-2

Vậy x/-3 = -2 => x=(-2)x(-3)=6

       y/-7= -2 => y=(-2)x(-7)=14

      nhớ chọn nhé

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 1 2024 lúc 6:17

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
AZ
20 tháng 1 2020 lúc 16:44

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

Bình luận (0)
 Khách vãng lai đã xóa