Những câu hỏi liên quan
HN
Xem chi tiết
MH
25 tháng 4 2023 lúc 20:02

Ta có: \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\Rightarrow a^2-2bc=b^2+c^2\)

\(\Rightarrow a^2-b^2-c^2=a^2-a^2+2bc=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)

Lại có: \(a+b+c=0\Rightarrow-a=b+c\)

                                   \(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)

                                  \(\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)=3abc\left(b+c=-a\right)\)

=> \(A=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
NL
Xem chi tiết
NT
29 tháng 6 2016 lúc 22:04

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

Bình luận (0)
NL
30 tháng 6 2016 lúc 8:46

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.

Bình luận (1)
DA
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
TN
10 tháng 8 2017 lúc 12:15

cho 2 biểu thức mà c/m 1 biểu thức M là sao

Biểu thức N vứt sọt à hay làm cái j v :V

Bình luận (0)
NP
12 tháng 11 2017 lúc 13:13

tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M  >=(a+b+c)/8

Bình luận (0)
CT
Xem chi tiết
PL
27 tháng 9 2016 lúc 13:23

Ko hieu đề 

Bình luận (0)
TN
18 tháng 3 2020 lúc 20:45

Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0

Bình luận (1)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NM
17 tháng 12 2021 lúc 16:37

\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)

Bình luận (0)