LM

Cho 3 số khác 0 a, b, c và a+b+c=0. Rút gọn biểu thức: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

NM
17 tháng 12 2021 lúc 16:37

\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
AV
Xem chi tiết
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết