cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
cho a,b,c khác 0 cà (a+b+c)^2=a^2+b^2+c^2 , cmr 1/a^2+1/b^2+1/c^2=3/abc
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
Cho a,b,c khác 0 t/m (a+b+c)^2=a^2+b^2+c^2.CMR: 1/a^3+1/b^3+1/c^3=3/abc
1) Cho 3 số a,b,c thỏa mãn a+b+c=abc
CMR a(b^2-1)(c^2-1)+b(a^2-1)(c^2-1)+c(a^2-1)(b^2-1)=4abc
2) Cho a và b thỏa mãn 2a^2+5b^2-4ab+14b-8a+11=0
So sánh a=a^13+b^15 và B=a^15+b^13
a, Cho a+b+c=0 CMR:\(a^3\)+\(a^2c-abc+b^2c+b^3=0\)
b, Cho 2(a+1)(b+1)=(a+b)(a+b+2) CMR:\(a^2+b^2=2\)
c, Cho \(a^2+c^2=2b^2\)CMR;
(a+b)(a+c)+(c+a)(c+b)=2(b+a)(b+c)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2