Những câu hỏi liên quan
NN
Xem chi tiết
BH
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Bình luận (0)
PT
Xem chi tiết
NH
15 tháng 10 2016 lúc 20:34

2/a)n=2

Bình luận (0)
LN
Xem chi tiết
NV
Xem chi tiết
H24
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bình luận (0)
VT
Xem chi tiết
NT
Xem chi tiết
TC
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
NT
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
FP
Xem chi tiết
DT
8 tháng 6 2017 lúc 14:02

1)Từ giả thiết ta biểu diễn a,b như sau: a= 3p +1 , b =3q +2 p,q là các số tự nhiên suy ra : ab = (3p+1)(3q+2) = 3(3pq + 2p +2q ) + 2 nếu đặt 3pq +2p+2q = x ab=3x+2 suy ra ab: 3 dư 2

Bình luận (1)
TN
8 tháng 6 2017 lúc 14:15

Theo bài toán:

\(a=3n+1,b=3m+2\)

\(\Rightarrow ab=\left(3n+1\right)\left(3m+2\right)=9mn+6n+3m+2=3\left(3mn+3n+m\right)+2\)\(3\left(3mn+2n+m\right)⋮3\) \(\Rightarrow\) ab chia 3 dư 2

2, \(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-3n=-5n\)\(-5n⋮5\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)\)

Bình luận (3)
CP
Xem chi tiết
GV
10 tháng 9 2014 lúc 19:14

n không chia hết cho 3 => n chia 3 dư 1 hoặc dư 2

Nếu n chia cho 3 dư 1 thì n2 chia cho 3 cũng dư 1 vì số dư là 12 = 1.

Nếu n chia cho 3 dư 2 thì n2 chia cho 3 cũng dư 1 vì số dư là 22 = 4 chia 3 dư 1.

Vậy trong cả hai trường hợp n2 đều chia cho 3 dư 1

Bình luận (0)
H24
15 tháng 3 2015 lúc 20:08

đây là cái định lí muôn thuở cần biết để mà giải toán chia hết đấy

Bình luận (0)
ND
22 tháng 9 2017 lúc 19:24

Văn chương hay đấy bạn.

Bình luận (0)
DD
Xem chi tiết
LC
2 tháng 10 2019 lúc 22:00

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

Bình luận (0)
DD
2 tháng 10 2019 lúc 22:03

cảm ơn bạn lê tài bảo châu nhé

Bình luận (0)