Phân tích: x3 + 3x2 -4
1 a. phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
b. phân tích đa thức 1 - 3x + 3x2 - x3 thành nhân tử
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b. \(=\left(1-x\right)^3\)
bài 4 : phân tích mỗi đa thức sau thành tích :
a, 3x2 - \(\sqrt{3x}\) +\(\dfrac{1}{4}\)
b,x2 - x - y2 +y
c,x4 + x3 + 2x2 +x +1
d, x3 + 2x2 + x - 16xy2
a, Sửa đề:
\(3x^2-\sqrt3 x+\dfrac14(dkxd:x\geq0)\\=(x\sqrt3)^2-2\cdot x\sqrt3\cdot\dfrac12+\Bigg(\dfrac12\Bigg)^2\\=\Bigg(x\sqrt3-\dfrac12\Bigg)^2\)
b,
\(x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\)
c,
\(x^4+x^3+2x^2+x+1\\=(x^4+x^3+x^2)+(x^2+x+1)\\=x^2(x^2+x+1)+(x^2+x+1)\\=(x^2+x+1)(x^2+1)\)
d,
\(x^3+2x^2+x-16xy^2\\=x(x^2+2x+1-16y^2)\\=x[(x+1)^2-(4y)^2]\\=x(x+1-4y)(x+1+4y)\\Toru\)
Phân tích đa thức thành nhân tử :
x3 -3x2 +3x -1 -y3
x3+3x2 +3x +1 -y3
Bạn phải vt thêm dấu mũ vào mới giải đc chứ!! Để thế kia ai mà giải đc
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\\ =\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
\(x^3+3x^2+3x+1-y^3\\ =\left(x+1\right)^3-y^3=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\\ =\left(x-y+1\right)\left(x^2+2x+1+xy+y+y^2\right)\)
a) x3-3x2+3x-1-y3 =(x-1)3 - y3
= (x-1)3 - 3.(x-1)2.y + 3.(x-1). y2 - y
phân tích đa thức sau thành phân tử
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)
Bài 2: Phân tích các đa thức sau thành nhân tử
a) x2 – 9 b) 4x2 -1 c) x4 - 16
d) x2 – 4x + 4 e) x3 – 8 f) x3 + 3x2 + 3x + 1
a) x² - 9
= x² - 3²
= (x - 3)(x + 3)
b) 4x² - 1
= (2x)² - 1²
= (2x - 1)(2x + 1)
c) x⁴ - 16
= (x²)² - 4²
= (x² - 4)(x² + 4)
= (x² - 2²)(x² + 4)
= (x - 2)(x + 2)(x + 4)
d) x² - 4x + 4
= x² - 2.x.2 + 2²
= (x - 2)²
e) x³ - 8
= x³ - 2³
= (x - 2)(x² + 2x + 4)
f) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
Đồ thị hàm số y = - x 3 + 3 x 2 - 4 . Để phương trình x 3 - 3 x 2 + m = 0 có hai nghiệm phân biệt thì
A. 0 < m < 4
B. m = 4
C. m = 0 m = 4
D. m = 0 m = - 4
phân tích thành nhân tử: x3 -3x2 + 3x - 1
giải giúp mình luôn câu: 4x2- 4xy + y2 -8x +4y
x3-3x2+3x-1=x3-3x2+3x-13=(x-1)(x2+x+1)+3(x2-x)
x3-3x2+3x-1
=(x3-1) -(3x2-3x)
=(x-1)x(x2-x+1)-3xx(x-1)
=(x-1)x(x2-x-3x+1)
=(x-1)x(x2-4x+1)
Phân tích các đa thức sau thành nhân tử:
a) 3x2 + xy - 4y2
b) x8 - 5x4 + 4
c) x3 + 3x2 + 3x - 7
Lời giải:
a.
$3x^2+xy-4y^2=(3x^2-3xy)+(4xy-4y^2)=3x(x-y)+4y(x-y)=(x-y)(3x+4y)$
b.
$x^8-5x^4+4=(x^8-x^4)-(4x^4-4)$
$=x^4(x^4-1)-4(x^4-1)=(x^4-1)(x^4-4)$
$=(x^2-1)(x^2+1)(x^2-2)(x^2+2)$
$=(x-1)(x+1)(x^2+1)(x-\sqrt{2})(x+\sqrt{2})(x^2+2)$
c.
$x^3+3x^2+3x-7=(x^3+3x^2+3x+1)-8$
$=(x+1)^3-2^3=(x+1-2)[(x+1)^2+2(x+1)+4]$
$=(x-1)(x^2+4x+7)$
a) \(3x^2+xy-4y^2=3x^2-3xy+4xy-4y^2\)
\(=3x(x-y)+4y(x-y)=(3x+4y)(x-y)\)
b)\(x^8-5x^4+4=x^8-x^4-4x^4+4\)
\(=x^2(x^4-1)-4(x^4-1)=(x^2-4)(x^4-1)\)
\(=(x-2)(x+2)(x^2-1)(x^2+1)=(x-2)(x+2)(x-1)(x+1)(x^2+1)\)
c)\(x^3+3x^2+3x-7=x^3+3x^2+3x+1-8\)
\(\left(x+1\right)^3-\sqrt{2}^3=\left(x+1-\sqrt[]{2}\right)\left(\left(x+1\right)^2+2\sqrt{2}x+2\right)\)
a: \(3x^2+xy-4y^2\)
\(=3x^2+4xy-3xy-4y^2\)
\(=x\left(3x+4y\right)-y\left(3x+4y\right)\)
\(=\left(3x+4y\right)\left(x-y\right)\)
b: \(x^8-5x^4+4\)
\(=x^8-x^4-4x^4+4\)
\(=x^4\left(x^4-1\right)-4\left(x^4-1\right)\)
\(=\left(x^4-4\right)\left(x^4-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^2-2\right)\left(x^2+2\right)\)
Phân tích đa thức thành nhân tử:
c) 16-x2+2xy-y2
d) (x-1)2-4(2x-3)2
e) x3-3x2+3x-1
f) x2-7
c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)
d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5-3x\right)\left(5x-7\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)
d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5x-7\right)\left(5-3x\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4