Những câu hỏi liên quan
TC
Xem chi tiết
NL
1 tháng 2 2021 lúc 21:33

Bạn tham khảo:

Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24

Bình luận (5)
DN
Xem chi tiết
NL
9 tháng 7 2021 lúc 22:24

b.

\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)

\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)

\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)

Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)

Phương trình có nghiệm khi và chỉ khi:

\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)

Bình luận (0)
NL
9 tháng 7 2021 lúc 22:28

Lý thuyết đồ thị:

Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)

Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)

a.

\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)

\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:

\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)

Bình luận (0)
NL
9 tháng 7 2021 lúc 22:28

c.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\left(m-1\right)sin2x-\left(m+1\right)\left(\dfrac{1}{2}+\dfrac{1}{2}cos2x\right)=m\)

\(\Leftrightarrow\left(2m-2\right)sin2x-\left(m+2\right)cos2x=3m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:

\(\left(2m-2\right)^2+\left(m+2\right)^2\ge9m^2\)

\(\Leftrightarrow m^2+m-2\le0\)

\(\Leftrightarrow-2\le m\le\)

Bình luận (0)
DN
Xem chi tiết
LL
9 tháng 7 2021 lúc 21:07

a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\) 

\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)

\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\) 

Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\) 

b)  \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)

 cosx=0→ sinx=0=> vô lý 

→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:

\(\left(3+m\right)tan^2x-2tanx+m=0\)

pt có nghiệm ⇔ △' ≥0

Tự giải phần sau 

c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\) 

⇔cosx=0→sinx=0→ vô lý

⇒ cosx#0 chia cả 2 vế pt cho cos2x

\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)

pt có nghiệm khi và chỉ khi △' ≥ 0

Tự giải

 

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2019 lúc 3:16

Đáp án là B

Bình luận (0)
KR
Xem chi tiết
H24
15 tháng 8 2021 lúc 21:48

a) 3sinx= 1-m => \(-3\le1-m\le3\) \(\Leftrightarrow-2\le m\le4\)

Bình luận (0)
HP
15 tháng 8 2021 lúc 22:03

b, \(4cos^2x=m+3\)

\(\Leftrightarrow4cos^2x-2=m+1\)

\(\Leftrightarrow2cos2x=m+1\)

\(\Leftrightarrow cos2x=\dfrac{m+1}{2}\)

Phương trình có nghiệm khi:

\(-1\le\dfrac{m+1}{2}\le1\)

\(\Leftrightarrow-2\le m+1\le2\)

\(\Leftrightarrow-3\le m\le1\)

Bình luận (0)
HP
15 tháng 8 2021 lúc 22:06

a, \(3sinx+m-1=0\)

\(\Leftrightarrow sinx=\dfrac{1-m}{3}\)

Phương trình có nghiệm khi:

\(-1\le\dfrac{1-m}{3}\le1\)

\(\Leftrightarrow-3\le1-m\le3\)

\(\Leftrightarrow-2\le m\le4\)

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 1 2018 lúc 11:12

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2017 lúc 17:27

Chọn B.

Ta có: ; f(0) = a + 2. 

Vậy để hàm số liên tục tại x = 0 thì a + 2 = 1 a = -1.

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 4 2017 lúc 10:21

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 4 2018 lúc 6:16

Chọn B

Bình luận (0)