Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HH
Xem chi tiết
H24

(1-2/2.3).(1-2/3.4).....(1-2/n.(n-1))=2021/6062

= ( \(\dfrac{6}{2.3}\) -\(\dfrac{2}{2.3}\) ). (\(\dfrac{12}{3.4}\) - \(\dfrac{2}{3.4}\) )......( \(\dfrac{9900}{99.100}\) - \(\dfrac{2}{99.100}\) )

= 4/2.3 .10/3.4..... 9898/99.100

= 1.4/2.3 . 2.5/3.4 ....  98.101/99.100

=\(\dfrac{1.2.3.4...98}{2.3...99}\) . \(\dfrac{4.5.6...101}{3.4.5...100}\) 

= 1/99.101/3

= 101/297

Bình luận (0)
H24
10 tháng 5 2023 lúc 19:54

(1-2/2.3).(1-2/3.4).....(1-2/n.(n-1))=2021/6062

= ( 22.322.3 ). (23.423.4 )......( 299.100299.100 )

= 4/2.3 .10/3.4..... 9898/99.100

= 1.4/2.3 . 2.5/3.4 ....  98.101/99.100

=4.5.6...1013.4.5...1004.5.6...1013.4.5...100 

= 1/99.101/3

= 101/297

Bình luận (0)
NM
Xem chi tiết
NT
19 tháng 7 2019 lúc 22:49

Violympic toán 9

Bình luận (3)
H24
20 tháng 7 2019 lúc 19:00

Cách lớp 7 nà:)

\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_

\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)

Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)

Vậy ta có đpcm

Gắt chưa??? :>> Dương Bá Gia Bảo

Bình luận (0)
NM
20 tháng 7 2019 lúc 12:20

mk làm đc rồi nha

Bình luận (2)
LM
Xem chi tiết
LH
13 tháng 8 2016 lúc 21:27

Ta có :

\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)

\(=2-\frac{1}{n!}< 2\)

Vậy ...

Bình luận (0)
TH
Xem chi tiết
MT
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bình luận (0)
NL
Xem chi tiết
NQ
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
HM
31 tháng 1 2020 lúc 20:20

   k . (k+ 1) . (k+2) - k .(k +1) . (k-1)

=  [ (k+2)-(k -1) ] .k .(k+1)

= (k + 2 -k +1) . k .(k+1)

= 3k (k+1)

Vậy: k . (k+ 1) . (k+2) - k .(k +1) . (k-1) = 3k (k+1)

S = 1.2+2.3+...+n.(n+1)

3S = 3.1.2 +3.2.3+...+3.n. (n+1)

3S = 1.2.3 - 0.1.2 +2.3.4 -1.2.3 + ... + n . (n+1 ) . (n+2) - (n-1).n.(n+1)

3S = n.(n+1).(n+2)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
NL
18 tháng 1 2022 lúc 22:42

1/...

2/ \(=\lim\dfrac{\dfrac{1}{n\sqrt{n}}-1}{4+\dfrac{1}{n^2\sqrt{n}}}=\dfrac{0-1}{4+0}=-\dfrac{1}{4}\) (chia cả tử-mẫu cho \(n^3\))

3/ \(=\lim\dfrac{3-\left(\dfrac{1}{4}\right)^n}{2.\left(\dfrac{3}{4}\right)^n+4\left(\dfrac{1}{4}\right)^n}=\dfrac{3-0}{2.0+3.0}=\dfrac{3}{0}=+\infty\) (chia tử mẫu cho \(4^n\))

4/ \(=\lim\dfrac{2.2^n+\dfrac{4}{3}.3^n}{1-\dfrac{1}{2}.2^n+3.3^n}=\lim\dfrac{2.\left(\dfrac{2}{3}\right)^n+\dfrac{4}{3}}{\left(\dfrac{1}{3}\right)^n-\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^n+3}=\dfrac{2.0+\dfrac{4}{3}}{0-\dfrac{1}{2}.0+3}=\dfrac{4}{9}\) (chia tử mẫu  cho \(3^n\))

Bình luận (0)