Những câu hỏi liên quan
DT
Xem chi tiết
NT
17 tháng 3 2021 lúc 22:12

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)

 

Bình luận (0)
HD
Xem chi tiết
TH
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Bình luận (0)
DT
Xem chi tiết
NT
17 tháng 3 2021 lúc 21:59

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2;-2\right\}\end{matrix}\right.\)

Ta có: \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}\)

\(=\dfrac{-1}{x-2}\)

Bình luận (0)
NA
Xem chi tiết
TL
20 tháng 7 2021 lúc 21:51

`(\sqrt(3x^2-12x+12)-x+2)/(x-2)`

`=(\sqrt(3(x^2-4x+4))-(x-2))/(x-2)`

`=(\sqrt(3(x-2)^2)) -(x-2))/(x-2)`

`=(\sqrt3. (x-2) - (x-2))/(x-2)`

`=( (\sqrt3-1) (x-2))/(x-2)`

`=\sqrt3-1`

`=>` C.

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 12 2022 lúc 23:01

\(M=\dfrac{x}{\left(x-2\right)\cdot\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\)

\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)

Bình luận (0)
MM
Xem chi tiết
TC
28 tháng 7 2021 lúc 15:06

undefinedundefined

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 20:28

a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)

\(=\dfrac{x^2+1}{x^2+x+1}\)

b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)

=>\(x^2+x+1-x⋮x^2+x+1\)

=>\(x⋮x^2+x+1\)

=>\(x^2+x⋮x^2+x+1\)

=>\(x^2+x+1-1⋮x^2+x+1\)

=>\(-1⋮x^2+x+1\)

=>\(x^2+x+1\in\left\{1;-1\right\}\)

=>\(x^2+x+1=1\)

=>x2+x=0

=>x(x+1)=0

=>\(x\in\left\{0;-1\right\}\)

 

Bình luận (0)
H24
Xem chi tiết
MK
18 tháng 12 2017 lúc 14:58

A\(\dfrac{x^3-9x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)=\dfrac{x\left(x^2-9\right)}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x+3\right)\left(x-3\right)}\right)=\dfrac{x\left(x+3\right)\left(x-3\right)}{2x+3}\left(\dfrac{\left(x+3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{x.x}{\left(x+3\right)\left(x-3\right)x}\right)=\dfrac{x\left(x+3\right)\left(x-3\right)}{2x+3}\left(\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)x}\right)\)

\(=\dfrac{x\left(x+3\right)\left(x-3\right)}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(x+3\right)\left(x-3\right)}{2x+3}.\dfrac{\left(x+3+x\right)\left(x+3-x\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(x+3\right)\left(x-3\right)}{2x+3}.\dfrac{\left(2x+3\right).3}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(x+3\right)\left(x-3\right)\left(2x+3\right).3}{\left(2x+3\right)x\left(x-3\right)\left(x+3\right)}=3\)

Bình luận (0)
TK
Xem chi tiết