Những câu hỏi liên quan
LH
Xem chi tiết
VL
Xem chi tiết

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
LD
15 tháng 8 2018 lúc 12:34

jupo voi

Bình luận (0)
VA
Xem chi tiết
H24
11 tháng 4 2020 lúc 13:32

x(2y+3) = y +1 => y+1 chia hết cho 2y +3 

                         => 2y + 2 chia hết cho 2y +3 

                         => 2y + 3 - 1 chia hết cho 2y + 3 

                         => -1 chia hết cho 2y +3

                          => 2y + 3 = -1 

2y +3 = -1 = > y = -2  =>  -x = -1 => x=1

2y + 3 = 1 => y = 1 => x = 0

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 4 2020 lúc 17:19

Ta có : x .( 2y+ 3 ) = y + 1 

=> ( y + 1 ) \(⋮\)( 2y + 3 ) 

=> \(\left(2y+2\right)⋮\left(2y+3\right)\)

=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 ) 

=> - 1 \(⋮\) ( 2y + 3 )

=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)

TH1 : 

2y + 3 =-1 <=> y = -2 

                  =>  x = 1 

TH2 : 

2y + 3 = 1 <=> y = -1

                 => x = 0 

Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 ) 

Bình luận (0)
 Khách vãng lai đã xóa
NC
25 tháng 4 2020 lúc 10:48

x=(y+1)/(2y+3)

mà x,y thuộc z => (y+1)/(2y+3)thuộc z

=> (y+1)chia hết cho(2y+3)

hay 2x=2y+2chia hết cho(2y+3)

=>2y+2-(2y+3)chia hết cho(2y+3)

=.1chia hết cho(2y+3)

=> 2y+3 thuộc ước của 1

=> y thuộc -2 ;-1

=>x thuộc 0;1

hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NT
3 tháng 7 2023 lúc 20:31

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

Bình luận (0)
VH
Xem chi tiết
NM
19 tháng 5 2016 lúc 8:28

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Bình luận (5)
VH
19 tháng 5 2016 lúc 8:29

Nguyễn Thị Mai copy trên mạng,ko tính

Bình luận (1)
HP
19 tháng 5 2016 lúc 8:56

x2-2y2=1

=>x2-1=2y2

=>x2-12=2y2

=>(x-1)(x+1)=2y2=y.2y

+)(x-1)(x+1)=2y2

=>x-1=2 và x+1=y2

=>x=3 và x+1=y2

Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2

+)(x-1)(x+1)=y.2y

=>x-1=y và x+1=2y

=>x=y+1 và x+1=2y

Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2

do đó x=2+1=>x=3

Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)

cách này dễ hiểu hơn nè

 

Bình luận (2)
TM
Xem chi tiết
NL
18 tháng 2 2022 lúc 15:35

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

Bình luận (0)
H24
18 tháng 2 2022 lúc 15:39

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

Bình luận (0)
LT
Xem chi tiết
BH
Xem chi tiết