Những câu hỏi liên quan
DQ
Xem chi tiết
H24
Xem chi tiết
H24
30 tháng 11 2019 lúc 20:07
lớp 9ko bt làmmới lớp sau lớp 9ko bt làmkhao khát dc kk cho mk ik~
Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 12 2019 lúc 14:53

Biến đi 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
QH
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
H24
Xem chi tiết
NL
26 tháng 11 2021 lúc 21:06

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)

Bình luận (0)
VG
Xem chi tiết
H24
18 tháng 2 2021 lúc 9:33

Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM

Bình luận (0)
ND
Xem chi tiết
PU
Xem chi tiết
PU
27 tháng 4 2019 lúc 21:23

cíu zới hiuhiu

Bình luận (0)