Tìm số x,y,z biết :
a, \(2^{x+3}+5.2^{x+2}\) = 224
b, 2xy = 3yz = 4zx và xyz = 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x,y,z biết : 2xy = 3yz = 4zx và xyz = 3
Trl :
https://olm.vn/hoi-dap/detail/104563324252.html
Bạn tham khảo !
Ta có : \(2xy=3yz=4zx\) => \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}\)
Đặt \(\frac{xy}{\frac{1}{2}}=\frac{yz}{\frac{1}{3}}=\frac{zx}{\frac{1}{4}}=k\)
=> \(\hept{\begin{cases}xy=\frac{k}{2}\\yz=\frac{k}{3}\\zx=\frac{k}{4}\end{cases}}\)
=> \(xy\cdot yz\cdot xz=\frac{k}{2}\cdot\frac{k}{3}\cdot\frac{k}{4}\)
=> \(\left(xyz\right)^2=\frac{k^3}{24}\)
=> \(3^2=\frac{k^3}{24}\)
=> \(k^3=24\cdot9\)
=> \(k^3=216\)
=> \(k=6\)
+) \(xy=\frac{k}{2}=\frac{6}{2}=3\); \(yz=\frac{k}{3}=\frac{6}{3}=2\); \(zx=\frac{k}{4}=\frac{6}{4}=\frac{3}{2}\)
Nếu xyz = 3 cùng với xy = 3 thì z = 1,cùng với yz = 2 thì x = \(\frac{3}{2}\),cùng với zx = \(\frac{3}{2}\)thì y = 2
Vậy \(\left(x,y,z\right)=\left(\frac{3}{2},2,1\right)\)
Tìm x;y;z biết: 2xy = 3yz = 4zx và xyz= = 3
2xy=3yz => x=3/2z
2xy=4zx=> y=2z
xyz=3
thế vào ta có:3/2z.2z.z=3=> z = 1
x = 3/2
y= 2
tìm các sô x, y, z biết :
2xy=3yz=4zx và xyz=3.
mình đang cần gấp ạ . mong các bạn giúp :))))
Thanks nhiều.
Cho x,y,z là các số thỏa mãn x+y+z=1. Tìm GTLN của A=2xy+3yz+4zx
\(x+y+z=1\Rightarrow z=1-x-y\)Thay vào A ta được:
\(A=2xy+3y\left(1-x-y\right)+4\left(1-x-y\right)x\)
\(\Leftrightarrow2xy+3y-3xy-3y^2+4x-4x^2-4xy-A=0\)
\(\Leftrightarrow3y-3y^2+4x-4x^2-5xy-A=0\)
\(\Leftrightarrow-4x^2-\left(5y-4\right)x-3y^2+3y-A=0\)
\(\Leftrightarrow4x^2+\left(5y-4\right)x+3y^2-3y+A=0\)
\(\Delta=\left(5y-4\right)^2-16\left(3y^2-3y+A\right)\)
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(5y-4\right)^2-16\left(3y^2-3y+A\right)\ge0\)
\(\Leftrightarrow25y^2-40y+16-48y^2+48y-16A\ge0\)
\(\Leftrightarrow-23y^2+8y+16\ge16A\)
\(\Leftrightarrow16A\le-23\left(y^2-\frac{8}{23}y-\frac{12}{23}\right)=-23\left(y-\frac{4}{23}\right)^2+\frac{384}{23}\le\frac{384}{23}\)
\(\Rightarrow A\le\frac{24}{23}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2xy+3y\left(1-x-y\right)+4\left(1-x-y\right)x=\frac{24}{23}\\\left(y-\frac{4}{23}\right)^2=0\\x+y+z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}\)
Vậy Max A = \(\frac{24}{23}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}\)
Cho 3 số thực dương x,y,z thoả mãn \(2\sqrt{y}+\sqrt{z}=\frac{1}{\sqrt{x}}.\) CMR
\(\frac{3yz}{x}+\frac{4zx}{y}+\frac{5xy}{z}\ge4\)
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge4\)
\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)
Ta có:
\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)
\(VT\ge2\left(x+y+z\right)+2y+4x\)
\(VT\ge2\left(3x+2y+z\right)\ge4\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Tìm các số x,y,z , biết :
a) 3x=2y; 7y=5z; x-y+z= 32
b) x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
c) x/2=y/3=z/5 và xyz=810
a) 3x = 2y \(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x+y+z}{10+15+21}=\frac{32}{46}=\frac{2}{3}\)
\(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
Vậy \(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
tìm GTLN của biểu thức \(P=3xy+3yz+3zx-xyz\) trong đó x,y,z là 3 số dương thỏa mãn \(x^3+y^3+z^3=3\)
Cho x, y, z là các số thực dương thỏa mãn \(2\sqrt{y}+\sqrt{z}=\frac{1}{\sqrt{x}}\). Tìm GTNN của A = \(\frac{3yz}{x}+\frac{4zx}{y}+\frac{5xy}{z}\)
Theo đề ta có :
\(2\sqrt{y}+\sqrt{z}=\frac{1}{\sqrt{x}}\\ 2\sqrt{xy}+\sqrt{xz}=1\left(1\right)\)
\(A=\frac{3yz}{x}+\frac{4zx}{y}+\frac{5xy}{z}=\left(\frac{yz}{x}+\frac{xz}{y}\right)+2\\ \left(\frac{yz}{x}+\frac{xy}{z}\right)+3\left(\frac{xz}{y}+\frac{xy}{z}\right)\ge2z+4y+6x\\ =4\left(x+y\right)+2\left(x+z\right)\ge8\sqrt{xy}+4\sqrt{xz}=4\left(2\sqrt{xy}+\sqrt{xz}\right)\left(2\right)\)
Từ (1),(2) suy ra : A\(\ge4\)
Vậy MinA = 4 \(\Leftrightarrow x=y=z=\frac{1}{3}\)