Với n là số nguyên dương hãy so sánh \(\frac{n}{n+8}\)và \(\frac{n-2}{n+9}\)
1.So sánh \(\frac{2016}{2017}+\frac{2017}{2018}\)với \(1\)( không tính kết quả )
2.So sánh: \(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
3. Với n là số nguyên dương hãy so sánh 2 phân số sau: \(\frac{n}{n+8}\)và \(\frac{n-2}{n+9}\)
1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1
2. A>B
Bài 1: không quy đông mẫu số hãy so sánh
A=\(\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}\); B=\(\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
Bài 2:Cho A= \(\frac{2n-3}{n+4}\)
a)Tìm n nguyên để A là 1 phân số .
b)Tìm n nguyên để A là 1 số nguyên.
Với mỗi số thực a, ta gọi phần nguyên không vượt quá a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
CMR với mọi số nguyên n>=2 thì :
S= \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\) không thể là 1 số nguyên
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}+\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)>-1\)
\(\Rightarrow S=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n+\left(-1\right)=n-1\left(2\right)\)
Từ (1) và (2) => n - 1 < S < n
Mà n - 1 và n là 2 số liên tiếp
Vậy ....
hãy chứng tỏ 2 số 3n+2 và 4n+3 là 2 số nguyên tố cng nhau với mọi STN n
luy y : cho chia cho
d cau sua la chia het nh
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
1/ so sánh 2*60 và 3*40
2/tìm ƯC của 2 số n+3 và 2n+5
3/A=5+5*2+5*3+5*4+...+5*99 chia hết cho 31
4/chứng tỏ (n+1) (n+2) (n+3) chia hết cho 6
5/ Chứng minh 3n+2 và 3n+3 (n\(\in\) n) là 2 số nguyên tố
6/tính tổng 2*1+2*2+2*3+...+2*100-2*101
7chung71 tỏ rằng số có dạng \(\frac{ }{abcabc}\) bao giờ chũng chia hết cho 11
8/Tìm số tự nhiên \(\frac{ }{abc}\) có 3 chữ số khác nhau , chia hết cho các số nguyên tố a,b,c.
Giúp mình với thứ 6 mình phải nộp rồi
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
7)Ta có:abcabc=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c
=11(9100a+910b+91c)\(⋮11\)
Vậy số có dạng abcabc luôn chia hết cho 11(đpcm)
Chứng minh rằng:
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\) với n là số nguyên dương; n>2
Nếu n=2k+1 ( với k là số nguyên dương thì \(\frac{2^n}{8^k}\)=...
Kết quả thích hợp điền vào chỗ trống.
\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)
Thay n = 2k + 1 vào
ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)