Những câu hỏi liên quan
LP
Xem chi tiết
H24
8 tháng 9 2015 lúc 14:56

3,4,5 trong sách toán 7 có đó

Bình luận (0)
BT
Xem chi tiết
NB
8 tháng 12 2015 lúc 20:56

Gọi 3 cạnh tam giác vuông là (n-1), n và (n+1), ta có:

(n-1)2 + n2 = (n+1)2

n2 -2n + 1 + n2 = n2 + 2n + 1

n2 - 4n =0

n(n-4) = 0

n = 0 (loại) hoặc n=4

Vậy 3 cạnh là: 3, 4, 5

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2018 lúc 6:42

Xét hai trường hợp:

- Trường hợp 1: a là độ dài một cạnh góc vuông.

Áp dụng định lí py- ta- go ta có:

a2 + 82 = 152

suy ra: a2 = 152 – 82 = 161 nên a = √161

(loại do a không là số tự nhiên)

-Trường hợp 2: a là độ dài cạnh huyền.

Áp dụng định lí Py- ta- go ta có:

a2 = 82 + 152 = 289 = 172, ta được a = 17 (thỏa mãn).

Vậy a = 17.

Bình luận (0)
SK
Xem chi tiết
MC
26 tháng 5 2017 lúc 22:36

Xét hai trường hợp :

- Trường hợp a là độ dài một cạnh góc vuông .

Từ a2 + 82 = 152 ,ta có a2 = 161 . Ta thấy 122 < a2 < 132 nên a không là số tự nhiên

- Trường hợp a là độ dài cạnh huyền

Từ a2 = 82 + 152 = 289 = 172 ,ta được a = 17

Vậy a = 17

Bình luận (0)
SA
Xem chi tiết
SA
16 tháng 7 2015 lúc 21:51

các bạn giải hộ mình với

Bình luận (0)
NH
17 tháng 7 2015 lúc 8:45

Trên cạnh BC lấy điểm D sao cho CD=CA.Ta có 

Theo đề bài ta có 
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA

Đặ BC=a ; AB=c ;Ac=b 

Do các cạnh của tam giác ABC là ba STN liên tiếp nên a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
b) Dễ rồi : kẽ đường cao AH xong rồi tính nhé

 

 

 

            **** hộ mình

 

Bình luận (0)

Trên cạnh BC lấy điểm D sao cho CD=CA.Ta có 
Theo đề bài ta có 
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
Đặ BC=a ; AB=c ;Ac=b 

Do các cạnh của tam giác ABC là ba STN liên tiếp nên a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
b) Dễ rồi : kẽ đường cao AH xong rồi tính nhé

Bình luận (0)
KK
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết
LH
19 tháng 8 2016 lúc 13:34

Gọi ba cạnh là a,b,c 

\(S=\frac{4a}{2}=\frac{12b}{2}=\frac{xc}{2}\)

\(\Rightarrow2S=4a=12b=xc\Rightarrow a=\frac{2S}{4},b=\frac{2S}{12},c=\frac{2S}{x}\)

Theo bất đẳng thức tam giác thì

\(a-b< c< a+b\Rightarrow\frac{6S}{12}-\frac{2S}{12}< 2S< \frac{6S}{12}+\frac{2S}{12}\)

\(\Rightarrow\frac{2S}{6}< \frac{2S}{x}< \frac{2S}{3}\)

Do x thuộc N nên x thuộc {4;5}

Bình luận (0)