Những câu hỏi liên quan
M9
Xem chi tiết
LL
30 tháng 9 2021 lúc 19:51

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Bình luận (0)
TN
Xem chi tiết
H24
1 tháng 11 2023 lúc 21:59

Bài `13`

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)

Bình luận (1)
NT
2 tháng 11 2023 lúc 0:13

17:
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{9;1\right\}\)

16:

a: BC=BH+CH

=9+16

=25(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>AM=AC/2=10(cm)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\dfrac{15}{10}=\dfrac{3}{2}\)

nên \(\widehat{AMB}\simeq56^0\)

Bình luận (0)
M9
Xem chi tiết
NG
20 tháng 10 2021 lúc 21:20

Câu 12.

   \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)

\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)

\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)

\(=8\sqrt{a}\)

 

 

Bình luận (0)
NG
20 tháng 10 2021 lúc 21:24

Câu 13. Chọn C.

Do x,y\(\ge\)0, x\(\ne\)y ta có:

\(A=\dfrac{x-\sqrt{xy}}{x-y}=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\cdot\left(\sqrt{x}+\sqrt{y}\right)}\)

    \(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

Bình luận (0)
M9
20 tháng 10 2021 lúc 21:28

Nhờ mn giúp em với ạ, mn xem em làm bài đúng ko ạ?

Bình luận (0)
AB
Xem chi tiết
KK
10 tháng 3 2022 lúc 15:10

Uống nước nhớ nguồn

Học ăn, học nói, học gói, học mở

Một mặt người bằng mười mặt của

Chớ thấy sóng cả mà ngã tay chèo

Lá lành đùm lá rách

Bình luận (0)
M9
Xem chi tiết
LL
30 tháng 9 2021 lúc 19:58

\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)

Bình luận (0)
TC
Xem chi tiết
LP
15 tháng 9 2023 lúc 19:38

 Cách 1: Cái này là định lý Fermat nhỏ thôi bạn. Tổng quát hơn:

 Cho số nguyên dương a và số nguyên tố p. Khi đó \(a^p\equiv a\left[p\right]\)

 Ta chứng minh định lý này bằng cách quy nạp theo a:

 Với \(a=1\) thì \(1^p\equiv1\left[p\right]\), luôn đúng.

 Giả sử khẳng định đúng đến \(a=k\left(k\inℕ^∗\right)\). Khi đó \(k^p\equiv k\left[p\right]\). Ta cần chứng minh khẳng định đúng với \(a=k+1\). Thật vậy, với \(a=k+1\), ta có:

 \(\left(k+1\right)^p=k^p+C^1_p.k^{p-1}+C^2_pk^{p-2}...+C^{p-1}_pk^1+1\)    (*)

 ((*) áp dụng khai triển nhị thức Newton, bạn có thể tìm hiểu trên mạng)

 (Ở đây kí hiệu \(C^n_m=\dfrac{m!}{n!\left(m-n\right)!}\) với \(m\ge n\) là các số tự nhiên và kí hiệu \(x!=1.2.3...x\)

 Ta phát biểu không chứng minh một bổ đề quan trọng sau: Với p là số nguyên tố thì \(C^i_p⋮p\) với mọi \(1\le i\le p-1\)

 Do đó vế phải của (*) \(\equiv k^p+1\left[p\right]\). Thế nhưng theo giả thiết quy nạp, có \(k^p\equiv k\left[p\right]\) nên \(k^p+1\equiv k+1\left[p\right]\), suy ra \(\left(k+1\right)^p\equiv k+1\left[p\right]\)

 Vậy khẳng định đúng với \(a=k+1\). Theo nguyên lí quy nạp, suy ra điều phải chứng minh. Áp dụng định lý này cho số nguyên tố \(p=7\) là xong.

 Cách 2: Đối với những số nhỏ như số 7 thì ta có thể làm bằng pp phân tích đa thức thành nhân tử để cm là được:

 \(P=a^7-a\) 

 \(P=a\left(a^6-a\right)\)

 \(P=a\left(a^3-1\right)\left(a^3+1\right)\)

 \(P=a\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

Nếu \(a⋮7,a\equiv\pm1\left[7\right]\) thì hiển nhiên \(P⋮7\)

Nếu \(a\equiv\pm2\left[7\right];a\equiv\pm3\left[7\right]\) thì \(\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\), suy ra \(P⋮7\). Vậy \(a^7-a⋮7\)

Bình luận (0)
TM
Xem chi tiết
NT
11 tháng 12 2021 lúc 23:01

Câu 5:

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

Bình luận (0)
SG
Xem chi tiết
PA
Xem chi tiết
NN
23 tháng 1 2022 lúc 16:01

\(\frac{\left(-30\right)\left(-5\right)\cdot3}{6\cdot25\cdot8}\Leftrightarrow\frac{30\cdot5\cdot3}{6\cdot25\cdot8}\)

\(\Rightarrow\frac{6\cdot5\cdot5\cdot3}{6\cdot5\cdot5\cdot8}=\frac{3}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa