Những câu hỏi liên quan
NT
Xem chi tiết
H24
7 tháng 8 2019 lúc 8:16

Theo mình nghĩ trước tiên ta cần tính 2A:)

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(\Rightarrow2A=3A-A=3^{101}-3\)

Theo đề bài thì \(2A+3=3^n\text{hay }3^{101}-3+3=3^n\)

\(\Leftrightarrow3^{101}=3^n\Rightarrow n=101\)

Bình luận (0)
HN
Xem chi tiết
H24
26 tháng 1 2016 lúc 22:16

Ta có : \(A=3+3^2+3^3+...+3^{2009}\)

=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)

=> \(2A=3^{2010}-3\)

=> \(2A+3=3^{2010}-3+3\)

=> \(2A+3=3^n=3^{2010}\)

=>  \(n=2010\)

Bình luận (0)
HN
26 tháng 1 2016 lúc 22:11

biết đáp án rồi

 

Bình luận (0)
VT
26 tháng 1 2016 lúc 22:14

vào chtt có trieu dang làm cả bài giải đó 

Bình luận (0)
NG
Xem chi tiết
NT
28 tháng 10 2023 lúc 19:32

\(B=3+3^2+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)

=>\(2B=3^{101}-3\)

=>\(2B+3=3^{101}\)

=>\(3^n=3^{101}\)

=>n=101

Bình luận (1)
NG
Xem chi tiết
DA
2 tháng 10 2017 lúc 13:44

sách bài tập có mà

Bình luận (0)
H24
2 tháng 10 2017 lúc 13:47

\(A=6+3^2+3^3+...+3^{100}\)

\(A=3^2+3^2+3^3+...+3^{100}\)

\(3A=\left(3^2+3^2+3^3+...+3^{100}\right).3\)

\(3A=3^3+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3^3+3^3+3^4+...+3^{101}\right)-\)\(\left(3^2+3^2+3^3+...+3^{100}\right)\)

\(2A=\left(27+3^3+...+3^{101}\right)\)

TỚI ĐÂY MÌNH BÓ TAY !!!

Bình luận (0)
CM
2 tháng 10 2017 lúc 14:26

Ta có : \(A=6+3^2+3^3+...+3^{10}\)

\(\Rightarrow A-6=3^2+3^3+...+3^{10}\)

\(\Rightarrow3\left(A-6\right)=3^3+3^4+...+3^{11}\)

\(\Rightarrow3\left(A-6\right)-\left(A-6\right)=\left(3^3+3^4+...+3^{11}\right)-\left(3^2+3^3+...+3^{10}\right)\)

\(\Leftrightarrow2\left(A-6\right)=3^{11}-3^2\)

\(\Leftrightarrow2A-12=3^{11}-3^2\)

\(\Rightarrow2A=3^{11}-3^2+12\)

Đến đây thì sai đề

Bình luận (0)
NC
Xem chi tiết
H24
22 tháng 1 2016 lúc 21:58

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

Bình luận (0)
TN
22 tháng 1 2016 lúc 21:59

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

Bình luận (0)
PH
22 tháng 1 2016 lúc 22:00

Ta có : A = 3 + 3+ 33 + ... + 3100

3A = 32+33+34+...+3101

Vậy 2A = 3101 - 3 

Vậy 2A + 3 = 3101

=> x = 101

Bình luận (0)
CN
Xem chi tiết
H9
8 tháng 7 2023 lúc 16:23

a) \(2^n=8\)

\(\Rightarrow2^n=2^3\)

\(\Rightarrow n=3\)

b) \(5^{n+1}=125\)

\(\Rightarrow5^{n+1}=5^3\)

\(\Rightarrow n+1=3\)

\(\Rightarrow n=3-1=2\)

c) Mình không rõ đề:

d) \(2\cdot7^{n-1}+3=101\)

\(\Rightarrow2\cdot7^{n-1}=101-3\)

\(\Rightarrow2\cdot7^{n-1}=98\)

\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)

\(\Rightarrow7^{n-1}=49\)

\(\Rightarrow7^{n-1}=7^2\)

\(\Rightarrow n-1=2\)

\(\Rightarrow n=1+2=3\)

e) \(3\cdot5^{2n+1}-6^2=339\)

\(\Rightarrow3\cdot5^{2n+1}=339+36\)

\(\Rightarrow3\cdot5^{2n+1}=375\)

\(\Rightarrow5^{2n+1}=125\)

\(\Rightarrow5^{2n+1}=5^3\)

\(\Rightarrow2n+1=3\)

\(\Rightarrow2n=2\)

\(\Rightarrow n=\dfrac{2}{2}=1\)

Bình luận (0)
NT
Xem chi tiết
H24
17 tháng 9 2018 lúc 18:37

Ta có \(A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-3\)

\(2A=3^{101}-3\)

Ta có \(2A+3=3^n\)

hay \(3^{101}-3+3=3^n\)

\(3^{101}=3^n\)

\(n=101\)

Bình luận (0)
NB
2 tháng 11 2019 lúc 20:22

A=3+32+33+.....+3100

3a=3.(3+32+33+....+3100)

3A=32+33+34+....+3101

3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)

2A=3101-3

2A+3=3101-3+3

2A+3=3101

3n=3101

=>n\(\in\)(101)

Chúc bn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
ND
20 tháng 8 2017 lúc 10:14

A = 3 + 3^2 + 3^3 + ... + 3^100

3A = 3^2 + 3^3 + 3^4 + ... + 3^101

3A \(-\)A = ( 3^2 + 3^3 + 3^4 + ... + 3^101) \(-\)(3 + 3^2 + 3^3 + ... + 3^100)

     2A  =    3^101  \(-\)3

\(\Rightarrow\)2A + 3 = 3^101  \(-\)3  +  3  =  3^101

\(\Rightarrow\)3^N  =  3^101

\(\Rightarrow\)N = 101

Bình luận (0)
LD
Xem chi tiết
PH
7 tháng 10 2018 lúc 18:17

\(A=1+3+3^2+...+3^{2016}+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2017}+3^{2018}\)    

\(3A-A=3^{2018}-1\)

\(2A+1=3^{2018}\)

Vậy n = 2018

Bình luận (0)
PL
7 tháng 10 2018 lúc 18:18

3A=3+3^2+3^3+...+3^2018

-A=1+3+3^2+...+3^2017

2A=3^2018-1

khi đó ta có 2A+1=3^2018-1+1=3^2018=3^n

=>n=2018

Bình luận (0)
LD
12 tháng 2 2019 lúc 19:47

cảm ơn các bạn

Bình luận (0)