Những câu hỏi liên quan
PC
Xem chi tiết
ND
8 tháng 4 2021 lúc 22:47

Ta có: \(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

\(=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

\(=1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

Ta thấy \(1>\frac{1}{2}\) ; \(\frac{1}{3}>\frac{1}{4}\) ; ... ; \(\frac{1}{4041}>\frac{1}{4042}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}< 1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\)

\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1\)

\(\Rightarrow1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1+1< 1+\frac{2021}{2020}=1\frac{2021}{2020}\)

\(\Rightarrow\frac{A}{B}< 1\frac{2021}{2020}\)

Bình luận (0)
 Khách vãng lai đã xóa
VK
Xem chi tiết
H9
12 tháng 3 2023 lúc 19:17

a) \(3\left(2x-x\right)=5x+1\)

\(\Leftrightarrow6x-3x=5x+1\)

\(\Leftrightarrow6x-3x-5x=1\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)

b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)

\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)

\(\Leftrightarrow x+2022=0\)

\(\Leftrightarrow x=-2022\)

 

Bình luận (1)
H24
12 tháng 3 2023 lúc 19:27

a)3(2x-3)=5x+1

⇔6x-9=5x+1

⇔6x-5x=1+9

⇔x=10

vậy phương trình có nghiệm là S={10}

b)\(\dfrac{x+1}{2021}\)+\(\dfrac{x+2}{2020}\)+\(\dfrac{x+3}{2019}\)+\(\dfrac{x+2028}{2}\)=0

⇔2020(x+1)+2021(x+2)+2041210(x+2028)=0

⇔2045251x+4139579942=0

⇔2045251x=-4139579942=0

⇔x=-\(\dfrac{4139579942}{2045251}\)

vậy phương trình có tập nghiệm là S={\(-\dfrac{4139579942}{2045251}\)}

Bình luận (0)
TL
Xem chi tiết
NN
22 tháng 2 2023 lúc 20:26

a)

`(2x-1)(x+2/3)=0`

\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)

\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)

\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)

\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)

\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)

Bình luận (0)
NL
22 tháng 2 2023 lúc 20:27

sai rồi , x không thể có 2 giá trị

Bình luận (0)
HP
22 tháng 2 2023 lúc 20:28

a) + Chia thành 2 trường hợp 

- 2x - 1 = 0

2x = 0 + 1

2x = 1

x = 1 : 2

x = 0,5

- x + 2/3 = 0

x = 0 - 2/3

x = -2/3

vậy x = { 0,5 ; -2/3 }

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 9 2021 lúc 13:22

a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)

\(=4x^2-20x+25-4x^2+20x\)

=25

b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)

\(=16-9x^2+9x^2+6x+1\)

=6x+17

c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)

\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)

=1

d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)

\(=\left(2021x-2020-2020x+2021\right)^2\)

\(=\left(x+1\right)^2\)

\(=x^2+2x+1\)

Bình luận (0)
PH
Xem chi tiết
H24
Xem chi tiết
NL
9 tháng 5 2021 lúc 9:23

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

Bình luận (0)
H24
Xem chi tiết
NN
23 tháng 3 2023 lúc 22:08

`<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0`

`<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0`

`<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0`

`<=>x+2022=0`

`<=>x=-2022`

Bình luận (2)
HD
23 tháng 3 2023 lúc 22:11

<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0

<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0

<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0

<=>x+2022=0

<=>x=-2022

Bình luận (0)
TP
Xem chi tiết
DH
16 tháng 1 2021 lúc 20:03

a) \(x\left(x+2021\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).

b) \(\left(x-2020\right)\left(x+2021\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).

c) \(\left(x-2021\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).

d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

Xét tổng: \(A=1+3+5+...+99\)

Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).

Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).

\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)

\(\Leftrightarrow50x+2500=0\)

\(\Leftrightarrow x=-50\).

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết