Những câu hỏi liên quan
CT
Xem chi tiết
LC
24 tháng 7 2019 lúc 23:11

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)

\(=\frac{n}{2\left(3n+2\right)}\)

Bình luận (0)
DD
Xem chi tiết
H24
Xem chi tiết
SG
8 tháng 8 2016 lúc 9:59

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)

                                                                          \(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

                                                                            \(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

                                                                              \(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)

                                                                                \(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)

Bình luận (0)
HD
Xem chi tiết
HA
28 tháng 1 2016 lúc 15:46

Đặt A=1/2.5+1/5.8+...+1/(3n-1).(3n+2)

=>3A=3/2.5+3/5.8+...+3/(3n-1).(3n+2)

=>3A=1/2-1/5+1/5-1/8+...+1/3n-1-1/3n+2

=>3A=1/2-1/3n+2

=>3A=(3n+2-2)/[2.(3n+2)]

=>3A=3n/6n+4

=>A=3n/6n+4/3

=>A=n/6n+4

 

Bình luận (0)
NT
28 tháng 1 2016 lúc 15:24

210

Bình luận (0)
CG
28 tháng 1 2016 lúc 15:26

210

 

 

 

Bình luận (0)
HT
Xem chi tiết
TC
14 tháng 4 2016 lúc 20:53

Đặt \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=>3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)

=> \(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n+2}\)

=>\(3A=\frac{1}{2}-\frac{1}{3n+2}\)

=> \(3A=\frac{\left(3n+2\right):2}{3n+2}-\frac{1}{3n+2}\)

=> \(3A=\frac{1,5.n}{3n+2}\)

=>\(A=\frac{1,5.n}{3n+2}.\frac{1}{3}=>A=\frac{1,5.n}{\left(3n+2\right).3}=\frac{1,5.n}{9n+6}\)

\(Hay\) \(A=\frac{1,5n:1,5}{\left(9n+6\right):1,5}=\frac{n}{9n:1,5+6:1,5}=\frac{n}{6n + 4} \left(đpcm\right)\)

Bình luận (0)
BS
Xem chi tiết
LV
10 tháng 8 2018 lúc 10:04

Ngân ơi, bài ai giao thế ?

Bình luận (1)
LV
10 tháng 8 2018 lúc 10:08

a,

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)

b,

\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)

Bình luận (0)
HD
Xem chi tiết
KB
19 tháng 9 2018 lúc 22:05

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)

Bình luận (0)
BT
Xem chi tiết
BT
30 tháng 3 2017 lúc 21:11

giup mink đi mấy bn

Bình luận (0)
NN
Xem chi tiết
H24
7 tháng 1 2016 lúc 22:12

n=1=> đẳng thức đúng

giả sử có số n=a thoả mãn pt=>

2+5+8+....+(3a-1)=a(3a+1)/2=(3a^2+a)/2(1)

phải chứng minh n=a+1 thoả mãn pt:

2+5+8+......+(3a+2)=(a+1)(3a+4)/2=(3a^2+7a+4)/2(2)

lấy (2) trừ (1) ta được:

(6a+4)/2=3a+2

=> 0=0 (đúng vs mọi a)

=> đẳng thức (2) đúg, dpcm

Bình luận (0)
HP
7 tháng 1 2016 lúc 21:04

Gọi ĐTV hay lê chí cường ấy

Bình luận (0)
NQ
7 tháng 1 2016 lúc 21:08

Đặt A = 2 + 5+  ....... + (2n - 1)

Số các số hạng là:

(3n - 1 - 2)/3 + 1 = (3n - 3)/3 + 1 = n - 1 + 1 = n

A = n x (3n -1 + 2) : 2

A = \(\frac{n\left(3n+1\right)}{2}\) => DPCM 

 

Bình luận (0)