tìm số nguyên x,y,z biết:
x/18=20/y=z/21=4/3
tìm số nguyên x,y,z,u,t biết:x/18=-98/y=-t/102=u/-78
tìm số nguyên x,y,z ;
a) 6/5 = 18/x
b) 3/4 = -21/x
c) x/4 = 21/28
d) -8/2x = 3/-9
e) -4/11 = x/22 = 40/z
f) - 3/4 = x/20 = 21 / y
g) -4/8 = x/-10 = -7/y = z/-24
h) x/4 = 9/x
\(a.\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow x=\dfrac{18\cdot5}{6}=15\\ \text{Vậy}\text{ }x=15.\)
\(b.\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow x=\dfrac{-21\cdot4}{3}=28\\ \text{ }\text{ }\text{ }\text{ }\text{Vậy }x=28.\)
\(c.\dfrac{x}{4}=\dfrac{21}{28}\Rightarrow x=\dfrac{21\cdot4}{28}=3\\ \text{Vậy }x=3.\)
\(d.\dfrac{-8}{2x}=\dfrac{3}{-9}\Rightarrow x=\dfrac{-8\cdot\left(-9\right)}{3}:2=12\\ \text{Vậy }x=12.\)
\(e.\dfrac{-4}{11}=\dfrac{x}{22}=\dfrac{40}{z}\\ \Rightarrow x=\dfrac{-4\cdot22}{11}=-8\\ \Rightarrow z=\dfrac{22\cdot40}{-8}=-110\\ \text{Vậy }x=-8;z=-110.\)
\(f.\dfrac{-3}{4}=\dfrac{x}{20}=\dfrac{21}{y}\\ \Rightarrow x=\dfrac{-3\cdot20}{4}=-15\\ \Rightarrow y=\dfrac{21\cdot20}{-15}=-28\\ \text{Vậy }x=-15;y=-28.\)
\(g.\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\\ \Rightarrow x=\dfrac{-4\cdot\left(-10\right)}{8}=5\\ \Rightarrow y=\dfrac{-7\cdot\left(-10\right)}{5}=14\\ \Rightarrow z=\dfrac{-7\cdot\left(-24\right)}{14}=12\\ \text{Vậy }x=5;y=14;z=12.\)
\(h.\dfrac{x}{4}=\dfrac{9}{x}\\ \Rightarrow x\cdot x=9\cdot4\\ \Rightarrow x\cdot x=36\\ \Rightarrow x\cdot x=6\cdot6\\ \text{Vậy }\text{cả hai }x=6.\)
Bài 1.Tìm x,y,z: a.x/5 = -12/20 ; b.2/y = 11/-66 ; c.-3/6 = x/-2 = -18/y = -z/24
Bài 2.Tìm các số nguyên x và y biết : x<0<y và:
-2/x = y/3
Bài 3.Tìm các số nguyên x và y biết x - y = 4 và:
x-3/y-2 = 3/2
Bài 4.Viết dạng chung của tất cả các phân số bằng phân số 21/28
tìm các số thực x, y, z biết:
x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
Tìm x, y, z biết:
x : (-11)= y : 16 và y-x = 21
Giúp vs !
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-11}=\dfrac{y}{16}=\dfrac{y-x}{16+11}=\dfrac{21}{27}=\dfrac{7}{9}\)
Do đó: x=-77/9; y=112/9
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{-11}=\dfrac{y}{16}=\dfrac{x-y}{16-\left(-11\right)}=\dfrac{21}{27}=\dfrac{7}{9}\)
\(\dfrac{x}{-11}=\dfrac{7}{9}\Rightarrow x=-\dfrac{77}{9}\\ \dfrac{y}{16}=\dfrac{7}{9}\Rightarrow y=\dfrac{112}{9}\)
Tìm x,y,z biết:x/y=2/3; y/z=3/4 và x+y+z=27
Tìm x,y,z biết:
x/y=7/20;y/z=5/8 và 2x-5y+2z=100
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)
fvklfksokodzsưkfposkfposzokokozspkfposfkkkfff;oeajfirepjfirjiod
tìm x,y biết:
x/-5=y/4=2
x/3=2/y;x,y ∈ Z
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
tìm x,y,z biết:x+y-3/z=y+z+2.x=x+z+1/y=1/x+y+z
Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.
Cảm ơn các em đã đồng hành cùng Olm.