Những câu hỏi liên quan
TP
Xem chi tiết
NP
21 tháng 2 2018 lúc 21:49

DE bằng nbao nhiêu cm vậy bạn?

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 4 2019 lúc 6:16

Bình luận (0)
NL
Xem chi tiết
TH
9 tháng 11 2016 lúc 19:55

Ta có: tam giác DEF = tam giác HIK

=> DE = HI ; EF = IK ; DF = HK

=> góc D = góc H

góc E = góc I

góc F = góc K

a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)

Mà góc E = 400 => góc I = 400

b/ Chu vi tam giác DEF= chu vi tam giác HIK

= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)

Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm

Bình luận (0)
H24
Xem chi tiết
HD
Xem chi tiết
NT
18 tháng 3 2023 lúc 21:47

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

Bình luận (1)
NT
Xem chi tiết
LM
Xem chi tiết
KL
28 tháng 9 2023 lúc 15:04

loading... Do EF đi qua O nên EF là đường kính của (O)

⇒ EF = 5.2 = 10 (cm)

Do ∆DEF nội tiếp (O) và EF là đường kính

⇒ ∆DEF vuông tại D

⇒ EF² = DE² + DF² (Pytago)

⇒ DF² = EF² - DE²

= 10² - 6²

= 64

⇒ DF = 8 (cm)

Bình luận (0)
NH
Xem chi tiết
NT
16 tháng 3 2022 lúc 20:12

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

Bình luận (0)
H24
16 tháng 9 2023 lúc 22:28

limdim

Bình luận (0)
LT
Xem chi tiết
VT
Xem chi tiết
HS
4 tháng 3 2021 lúc 10:25

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

Bình luận (0)
 Khách vãng lai đã xóa
co
4 tháng 3 2021 lúc 10:25

ko b oi

Bình luận (0)
 Khách vãng lai đã xóa
MC
4 tháng 3 2021 lúc 15:22

hai tam giác ko thể đồng dạng bạn nhé

Bình luận (0)
 Khách vãng lai đã xóa