Những câu hỏi liên quan
NL
Xem chi tiết
LH
Xem chi tiết
TT
25 tháng 12 2016 lúc 10:23

theo mình thì thiếu điều kiện \(^{x^2-y^2=1}\)nữa thì giải được

Bình luận (0)
NA
2 tháng 1 2017 lúc 17:27

NẾU CÓ THÊM ĐIỀU KIỆN ĐÓ THÌ SẼ GIẢI LÀM SAO? GIÚP MÌNH VS, MÌNH CẦN GẤP

Bình luận (0)
TT
Xem chi tiết
PH
Xem chi tiết
LT
Xem chi tiết
H24

nhóm cuối sẽ nhóm được thành nhiều nhóm:

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

cho mik nha

Bình luận (0)
TN
14 tháng 2 2024 lúc 20:17

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

Bình luận (0)
NV
14 tháng 2 2024 lúc 20:18

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

Bình luận (0)
NH
Xem chi tiết
H24
12 tháng 7 2017 lúc 9:48

Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có: 
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017

Cách 2:

zzBv

Bình luận (0)
TQ
Xem chi tiết
TQ
22 tháng 3 2017 lúc 20:37

Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có: 
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017

Cách 2:

Bình luận (0)
NB
26 tháng 6 2017 lúc 20:34

Là 1008/2017 đó nha

Bình luận (0)
TH
19 tháng 4 2018 lúc 20:18

Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).

Bình luận (0)
H24
Xem chi tiết
XO
16 tháng 8 2019 lúc 13:40

 \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}< 1\)

\(\Rightarrow A< 1\)

\(\text{Vậy }A< 1\left(\text{đpcm}\right)\)

Bình luận (0)
H24
16 tháng 8 2019 lúc 13:40

                                                                     Bài giải

 Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ;  \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)  ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)

                                   \(\Rightarrow\text{ }A< 1\)

Bình luận (0)
H24
16 tháng 8 2019 lúc 13:42

                                                                     Bài giải

 Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ;  \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)  ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)

                                   \(\Rightarrow\text{ }A< 1\text{ }\left(\text{ ĐPCM}\right)\)

Bình luận (0)
DK
Xem chi tiết
DV
29 tháng 3 2017 lúc 21:58

0

k mình nha

Bình luận (0)