CMR A=1+1/2^2+1/3^2+1/4^2+1/5^2+...+1/2016^2<7/4
CMR A=1/2^2+1/3^2+1/4^2+.......+1/2016^2<1
cmr:1/2^2 + 1/4^2 +... +1/2016^2<1/2
1/2+3/4+5/6+...+2015/2016 CMR A^2<1/2017
(3/4)^2016 . (1/4)^2 - (3/4)^2016 . (7/4)^2
D=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2016(1+2+...+2016)
1+2+3+4+...+2016+2017+2018
1+2+3+4+...+2016+2017+2018
CMR:
a, M= 1/2² + 1/3²+1/4²+...+1/2016² <1
b, N=1/4²+1/6²+1/8²+...+1/100² <1/4
c, P=2!/3!+2!/4!+2!/5!+...+2!/n! <1
Cho S=1/4+2/4^2+3/4^3+.......+2016/4^2016
Chứng tỏ rằng S<1/2