Những câu hỏi liên quan
HA
Xem chi tiết
NT
29 tháng 7 2023 lúc 13:37

a:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc CMO+góc CIO=180 độ

=>CIOM nội tiếp

Bình luận (0)
TV
Xem chi tiết
NT
5 tháng 1 2023 lúc 23:19

8D 5D 6B

Bình luận (0)
HA
Xem chi tiết
NT
10 tháng 7 2023 lúc 0:35

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

Bình luận (0)
HA
Xem chi tiết
NT
16 tháng 6 2023 lúc 20:53

a: \(=\dfrac{\sqrt{3}\left(x\sqrt{2}+y\sqrt{5}\right)}{2\left(x\sqrt{2}+y\sqrt{5}\right)}=\dfrac{\sqrt{3}}{2}\)

b: \(=\dfrac{a+\sqrt{a}-a-2}{\sqrt{a}+1}:\dfrac{a-\sqrt{a}+\sqrt{a}-4}{a-1}\)

\(=\dfrac{\left(\sqrt{a}-2\right)}{\sqrt{a}+1}\cdot\dfrac{a-1}{a-4}=\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\)

Bình luận (0)
TN
Xem chi tiết
TN
7 tháng 1 2022 lúc 17:23

post vừa rồi bị lỗi ảnh nên em post lại ạ ...

Bình luận (0)
NT
7 tháng 1 2022 lúc 17:26

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Bình luận (0)
MN
Xem chi tiết
NT
2 tháng 10 2021 lúc 22:18

8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

Bình luận (0)
HA
Xem chi tiết
NT
10 tháng 7 2023 lúc 0:38

Gọi vận tốc của ô tô là x

=>Vận tốc xe máy là x-10

Theo đề, ta có: 120/(x-10)-120/x=1

=>(120x-120x+1200)/x(x-10)=1

=>x^2-10x=1200

=>x^2-10x-1200=0

=>x=40

Bình luận (0)
TD
Xem chi tiết
NT
1 tháng 7 2021 lúc 23:02

Bài 14:

a)

Sửa đề: \(AE\cdot AB=AD\cdot AC\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADB vuông tại D có 

\(\cos\widehat{A}=\dfrac{AD}{AB}\)

Xét ΔAED và ΔACB có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}\cdot BC=DE\)

\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)

c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)

nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(EM=\dfrac{1}{2}BC\)(2)

Ta có: ΔDBC vuông tại D(gt)

mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(DM=\dfrac{1}{2}BC\)(3)

Từ (1), (2) và (3) suy ra ME=MD=DE

hay ΔMDE đều(đpcm)

Bình luận (1)
NH
Xem chi tiết