Những câu hỏi liên quan
H24
Xem chi tiết
LA
28 tháng 4 2016 lúc 19:36

áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)

=> B>= 2-3*2+5=1

Dấu bằng khi x=y=1

Bình luận (0)
TH
Xem chi tiết
H24
Xem chi tiết
MY
4 tháng 6 2021 lúc 22:10

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

Bình luận (1)
MY
5 tháng 6 2021 lúc 6:03

b, ta có : \(x+y=1=>2x+2y=2\)

\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)

\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)

=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)

 

Bình luận (0)
VH
Xem chi tiết
HT
28 tháng 3 2019 lúc 20:55

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

Bình luận (0)
PN
Xem chi tiết
PN
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Bình luận (0)
PN
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Bình luận (0)
YL
Xem chi tiết
CM
10 tháng 4 2019 lúc 8:36

Ta có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

^^

Bình luận (0)
HN
Xem chi tiết
AH
24 tháng 12 2021 lúc 8:19

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$

Bình luận (0)
RL
Xem chi tiết
NT
22 tháng 12 2021 lúc 17:13

3r3reR

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết
NT
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

Bình luận (0)