chứng tỏ rằng các đa thức sau không có nghiệm:
a) x^2+4*x+5
b) x*2+6*x+10
giải thích tại sao
Chứng tỏ đa thức sau không có nghiệm:A=x^2+3x+3
Các bạn làm ơn giúp mình với mình đang cần gấp nhé!
\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)
=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> Đa thức A vô nghiệm.
A= 4(x - 6) - x^2(2 + 3x) + x(5x - 4) + 3x^2(x - 1)
Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến
Ta có : \(A=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy ....
`A=4(x-6)-x^2(3x+2)+x(5x-4)+3x^2(x-1)`
`=4x-24-3x^3-2x^2+5x^2-4x+3x^3-3x^2`
`=-24` không phụ thuộc vào biến
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 + x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
Bài 2: Chứng to rằng các đa thức sau vô nghiệm:
a) f(x) = x +x+1
b) g(x) = x - x+1
c) mx)=(x-1)² +(x-2)
d) e(x) = |x-1+|x-2|
Bài 4: Tìm nghiệm của đa thức sau:
a) f(x)= x -2x-4
b) g(x) = x² + x +4
c) mx) = 8x - 12x +6x-2
d) n(x)= x+3x +3x+2
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
a) tìm nghiệm của đa thức sau
P(y) = 3y - 6
M(x) = x mũ 2 - 4
b) chứng tỏ rằng đa thức sau không có nghiệm : Q(x) = x mũ 4 + 1
a)
Để P(y)=0\(\Leftrightarrow3y-6=0\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=2\)
Vậy P(y) có nghiệm là 2
Để M(x)=0\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x\in\){2;-2}
Vậy M(x) có nghiệm là 2 và -2
b)
Ta có:
\(x^4\ge0\)
\(\Rightarrow x^4+1\ge1>0\)
\(\Rightarrow Q\left(x\right)>0\)
\(\Rightarrow Q\left(x\right)\ne0\)
Vậy Q(x) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Chứng minh các đa thức sau không coa nghiệm:a-x²+9x-10;b-4x²-4x+5
Chứng tỏ rằng các đa thức sau không có nghiệm
a. x^2+x+1
b. x^4+2x^2+1
c. (x-1)^2+|x-2|
d. x^8-x^5+x^2-x+1
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
chứng tỏ các đa thức sau không có nghiệm
c) \(\left(x+2\right)^2+1\)
d) \(x^4+2019\)
c)
`(x+2)^2 +1=0`
`=>(x+2)^2 =-1` (vô lí vì `(x+2)^2 ≥0∀x` )
d)
`x^4 +2019=0`
`=>x^4 =-2019` (vô lí vì `x^4 ≥0∀x` )
`c,`
Ta thấy: \(\left(x+2\right)^2+1\ge5>0\left(\forall x\right)\)
`->` Đa thức này không có nghiệm (vô nghiệm)
`d,`
Ta thấy: \(x^4+2019\ge2019>0\left(\forall x\right)\)
`->` Đa thức này không có nghiệm.
chứng tỏ rằng đa thức sau không có nghiệm: f(x) = x2+x+x+2
\(f\left(x\right)=x^2+x+x+2\)
\(f\left(x\right)=x^2+2x+1+1\)
\(f\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)
\(\Leftrightarrow f\left(x\right)\ge1\)
Vậy f(x) > 0 nên phương trình không có nghiệm
Ta có : \(f\left(x\right)=x^2+x+x+2\)
\(=x^2+x+x+1+1\)
\(=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức f(x) không có nghiệm
_Chúc bạn học tốt_
Bạn ms lớp 7 nên hãy ấp dụng theo bạn hiền mà làm còn mình dùng hằng đẳng thức ở lớp 8 rùi sorry bạn nhiều nha :(