Tìm nghiệm tự nhiên của phương trình sau:
\(\sqrt{x+\sqrt{x+\sqrt{x}}}=y\)
Tìm nghiệm tự nhiên của phương trình sau:
\(\sqrt{x+\sqrt{x+\sqrt{x}}}=y\)
Tìm nghiệm nguyên của phương trình \(\sqrt{x+y+3}\)+1=\(\sqrt{x}\)+\(\sqrt{y}\)
Lời giải:
PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$
$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$
$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$
$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$
$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$
$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$
Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.
Do đó: $\sqrt{xy}$ là scp
Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$
$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$
$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$
$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.
Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$
Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.
Tìm m để hệ phương trình sau có nghiệm:
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)
ĐK: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)^2-3\sqrt{xy}=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\sqrt{xy}=m\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(\Rightarrow a,b\) là nghiệm phương trình \(t^2-t+m=0\left(1\right)\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm không âm
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\ge0\\x_1+x_2\ge0\\x_1x_2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{4}\\1\ge0\\m\ge0\end{matrix}\right.\Leftrightarrow0\le m\le\dfrac{1}{4}\)
Tìm nghiệm nguyên dương của phương trình \(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\).
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
(x,y) hoán vị của (4,9) . có vẻ hoạt động
\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y}\)
Tìm nghiệm nguyên của phương trình.
ĐKXĐ: x;y > 0
\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)
Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)
\(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)
Đặt \(y^2-x=a\left(a\inℕ\right)\)
Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)
\(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)
Tương tự như trên
Đặt \(a^2-x=b\left(b\inℕ\right)\)
\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)
\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)
Từ (1) => \(\sqrt{x}\inℕ\)
Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)
Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp
Mà b2 là số chính phương
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
\(\Rightarrow y=0\)
Vậy pt có nghiệm duy nhất (x;y) = (0;0)
Tìm nghiệm nguyên dương của phương trình sau:
\(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)
=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương
=> \(\sqrt{503y}\) là số nguyên dương
mà 503 là số nguyên tố và 0 < y < 2012
=> y = 503
=> x = 503
Kết luận:...
Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?
Tìm nghiệm nguyên dương của phương trình : \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)
\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)
\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)
\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)
Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)
\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)
Tìm nghiệm nguyên của phương trình \(\sqrt{x}+\sqrt{y}=\sqrt{x+y}+2\)
Tìm nghiệm nguyên của phương trình:
\(y=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)