Những câu hỏi liên quan
LA
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
NK
Xem chi tiết
H24
9 tháng 5 2021 lúc 22:09
Bình luận (0)
LA
Xem chi tiết
TF
8 tháng 12 2018 lúc 21:11

Chứng minh: 
Tam giác ABC có: 
M là trung điểm của AB( theo giả thiết) 
N là trung điểm của AC( theo giả thiết) 
=>MN là đường trung bình của tam giác ABC 
=> MN=1/2 BC 
Chứng minh định lý: 
Trên tia đối của tia NM lấy điểm D sao cho N là trung điểm của MD 
Xét tam giác ANM và tam giác CND 
Ta có: 
AN=NC( theo giả thiết) 
Góc ANM=gócCND( hai góc đối đỉnh) 
NM=ND(cách vẽ) 
Do đó: 
Tam giác ANM = tam giác CND( c.g.c) 
=> AM=CD( hai cạnh tương ứng) 
Và góc A= góc MCD(hai góc tương ứng) 
=> AM//CD 
=> MB//CD 
=> MBCD là hình thang 
Lại có: 
AM=CD 
=> MD=BC và MD//BC 
=> MN//BC 
Mà N là trung điểm của MD(cách vẽ) 
=> MN=1/2 MD 

Bình luận (0)
LA
8 tháng 12 2018 lúc 21:22

vẽ hình cho mk với

Bình luận (0)
TF
8 tháng 12 2018 lúc 21:38

A B C M N P

Bình luận (0)
MH
Xem chi tiết
BK
Xem chi tiết
0B
13 tháng 1 2023 lúc 19:46

a) Xét ∆AMN và ∆DCN:

MN = ND (gt)

Góc N1 = Góc N2 (hai góc đối đỉnh

AN = NC ( N là trung điểm của AC)

=> ∆AMN = ∆DCN (c-g-c)

=> AM = CD (dpcm)

b)

Ta có: M,N lần lượt là trung điểm của AB, AC

=> MN là đường trung bình của ∆ABC

=> MN = 1/2BC

Bình luận (0)
IT
Xem chi tiết
NT
16 tháng 2 2021 lúc 18:02

a) Ta có: \(AP=BP=\dfrac{AB}{2}\)(P là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AP=BP=AN=NC

Xét ΔABN và ΔACP có

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AP(cmt)

Do đó: ΔABN=ΔACP(c-g-c)

Suy ra: BN=CP(hai cạnh tương ứng)

b) Xét ΔMNC và ΔINA có 

MN=IN(gt)

\(\widehat{MNC}=\widehat{INA}\)(hai góc đối đỉnh)

NC=NA(N là trung điểm của AC)

Do đó: ΔMNC=ΔINA(c-g-c)

Suy ra: MC=IA(hai cạnh tương ứng)

Xét ΔANM và ΔCNI có 

AN=CN(N là trung điểm của AC)

\(\widehat{ANM}=\widehat{CNI}\)(hai góc đối đỉnh)

NM=NI(gt)

Do đó: ΔANM=ΔCNI(c-g-c)

Suy ra: AM=CI(hai cạnh tương ứng)

Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay \(\widehat{AMC}=90^0\)(1)

Xét ΔAMC và ΔCIA có 

AC chung

AM=CI(cmt)

MC=IA(cmt)

Do đó: ΔAMC=ΔCIA(c-c-c)

Suy ra: \(\widehat{AMC}=\widehat{CIA}\)(hai góc tương ứng)(2)

Từ (1) và (2) suy ra \(\widehat{AIC}=90^0\)

Vậy: \(\widehat{AIC}=90^0\)

Bình luận (2)
BL
Xem chi tiết
SG
22 tháng 8 2017 lúc 19:53

a) 2 và 9

chỉ biết thế thôi

Bình luận (0)