Những câu hỏi liên quan
KT
Xem chi tiết
NT
26 tháng 10 2022 lúc 23:08

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6

Bình luận (0)
VH
Xem chi tiết
NL
26 tháng 11 2024 lúc 21:52

tui ko tra loi

Bình luận (0)
NR
Xem chi tiết
H24
26 tháng 6 2016 lúc 17:32

n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n 
Ta có n(n-1)(n=1) là tích 3 số nguyên nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6

Bình luận (0)
NR
28 tháng 6 2016 lúc 16:15

sao biết : n(n^2-1)= n(n-1)(n+1)

Bình luận (0)
LG
Xem chi tiết
NH
19 tháng 10 2019 lúc 11:59

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
DD
16 tháng 3 2020 lúc 9:04

Ta có:n-13n=(n3-n)-12n=n(n2-1)-12n=n(n-1)(n+1)-6.(2n)

Mà n(n-1)(n+1) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3\(\Rightarrow\)n(n-1)(n+1) chia hết cho 6

Lại có 6.(2n) chia hết cho 6

Suy ra:n(n-1)(n+1)-6.(2n) chia hết cho 6

Do đó:n3-13n chia hết cho 6.

Bình luận (0)
 Khách vãng lai đã xóa
CM
Xem chi tiết
CM
Xem chi tiết
BN
21 tháng 1 2016 lúc 23:08

vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8

mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6

vậy 8(m-1)m(m+1) chia hết cho 48

Bình luận (0)
MS
Xem chi tiết
NM
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

Bình luận (0)
LL
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

Bình luận (0)
NT
11 tháng 10 2021 lúc 21:16

\(n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bình luận (0)
NP
Xem chi tiết
VT
28 tháng 8 2016 lúc 10:03

Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 
 

Bình luận (0)