Giải pt nghiệm nguyên sau
\(x^2y^2+xy+1=x^2\)
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Giải pt nghiệm nguyên:
\(x^3+y^3=5+x^2y+xy^2\)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
1.Giải pt \(\frac{1}{\left(2x+1\right)^2}+\frac{1}{\left(2x+2\right)^2}=3\)
2.Tìm nghiệm nguyên của pt \(x^3+y^3-x^2y-xy^2=5\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)2 dễ hơn
Giải pt nghiệm nguyên :
a, x2 -2xy + y2 -3x +2y +1=0
b, x2 + xy +y2 = 2x + y
giải phương trình nghiệm nguyên sau
\(2y^2x+x+y+1=x^2+2y^2+xy\)
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
Tìm pt nghiệm nguyên \(x^2y - 5x^2 - xy - x + y - 1 = 0\)
PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)
Với y=5 thì ta không tìm được x thỏa mãn
Với \(y\ne5\), ta có
\(\Delta=-3y^2+26-19\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)
Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)
Tìm nghiệm nguyên của PT: \(x^2y^2-xy=x^2=2y^2\)
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
sorry @Thắng Hoàng mình nhầm đề, phải là
\(x^2y^2-xy=x^2+2y^2\)
Giải pt nghiệm nguyên: \(x^2y+1=x^2+2xy+2x+y\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
Tìm nghiệm nguyên của các pt sau
\(a,x^2+y^2+xy+3x-3y+9=0\)\(0\)
\(b,x^2-4x-2y+xy+1=0\)