rút gọn B=1/2^2+1/2^3+....+1/2^100
1^3+2^3+3^3+...+100^3/1×5+2×8+3×11+...+100×302 rút gọn ps
Rút gọn biểu thức:
a/ A=100^2-99^2+98^2-97^2+...+2^2-1^2
b/ B=3(2^2+1)(2^4+1)...!2^64+1)+1
\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+....+\left(2-1\right).\left(2+1\right)\)
\(=1+2+....+97+98+99+100=\frac{100.\left(100+1\right)}{2}=5050\)
\(B=3\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1=\left(2^8-1\right).....\left(2^{64}+1\right)+1\)
Tiếp tục rút gọn như vậy,ta đc \(B=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1+1=2^{128}\)
Rút gọn;
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{101}}\)
\(\Rightarrow A=\frac{2^{101}-1}{2^{101}}\)
Rút gọn B = (2x+3)\(^2\)-(4x+6)(x+1)+(x+1)\(^2\)
Rút gọn biểu thức
Rút gọn biểu thức
(x-1)(x-2)(x+2)-(x-3)^3
(xy-1)(xy-2)-(xy-2)^2
(x-1)(x-2)(x+2)-(x-3)\(^3\)
=(x-1)(x\(^2\)-4)-(x-3)\(^3\)
(xy-1)(xy-2)-(xy-2)\(^2\)
=(xy-2)(xy-1-xy+2)
=xy-2
Rút gọn : \(\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
a) Tìm tập xác định và rút gọn A
b) Tìm a để A = 3
a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)
\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)
\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)
\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)
b: Để A=3 thì \(3a^2-3=a\)
\(\Leftrightarrow2a^2=3\)
hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)
(Theo bài toán của cô Ms Hạnh - THCS NX)
Rút gọn tổng sau :
\(A=1+2+2^2+2^3+2^4+...+2^{100}\).
\(A=1+2+2^2+2^3+2^4+...+2^{100}\)
\(2A=2+2^2+2^3+2^4+2^5+....+2^{101}\)
\(2A-A=\left(2+2^2+2^3+2^4+2^5+...+2^{101}\right)-\left(1+2+2^2+2^3+2^4+...+2^{100}\right)\)
\(A=2^{101}-1\)
Rút gọn : a) M = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
b) N = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
a)M=2100-299+298-...+22-2
22M=2102-2101+2100-...+22-2
4M-M=2102-2101+2100-...+22-2-2100+299-...-22+2
3M=2102-2101
M=\(\frac{2^{102}-2^{101}}{3}\)
rút gọn
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}\)
Xét mẫu số của phân số:
\(\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}\)
\(=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+\left(\dfrac{99}{1}-98\right)\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+1\)
\(=100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Ta thấy mẫu số gấp tử số 100 lần. Vậy phân số đó có giá trị bằng \(\dfrac{1}{100}\)