Những câu hỏi liên quan
H24
Xem chi tiết
H24
11 tháng 11 2023 lúc 22:33

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

Bình luận (1)
BT
11 tháng 11 2023 lúc 22:26

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

Bình luận (1)
NB
20 tháng 12 2024 lúc 19:28

quá là ez 

đáp án là 5

Vì 1n = 1.5 = 5 : 5 = 1

2N = 2.5 = 10:5 = 2

Tương tự

Bình luận (0)
TK
Xem chi tiết
H24
28 tháng 12 2016 lúc 20:24

N= 1 duy nhất

Bình luận (0)
H24
28 tháng 12 2016 lúc 20:24

n.(1+2)=3

n.3=3

n=3:3

n=1

Vậy n=1

Bình luận (0)
TN
28 tháng 12 2016 lúc 20:26

n=1

thoả mãn điều kiện

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2019 lúc 16:34

Bình luận (0)
DH
Xem chi tiết
AH
22 tháng 11 2021 lúc 17:52

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 8 2023 lúc 9:30

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

Bình luận (2)
H9
13 tháng 8 2023 lúc 9:34

a) Đặt d là ƯCLN(2n+2, 2n+3) 

\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)

\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau 

Bình luận (0)
H9
13 tháng 8 2023 lúc 9:42

b) Đặt d là ƯCLN(2n+1, n+1) 

\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)

\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)

\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau 

c) Đặt d là ƯCLN(n+1, 3n+4) 

\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)

\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau 

Bình luận (0)
BT
Xem chi tiết
NT
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Bình luận (1)
PB
Xem chi tiết
CT
26 tháng 4 2018 lúc 4:32

Chọn C

1. u n = 3 n + 1                   2. u n = 4 − 5 n  

3. u n = 2 n + 3 5                      4. u n = n + 1 n  

 

* Xét dãy số: u n = 3 n + 1   

Ta có: 

u n + 1 − u n = 3 ( n + 1 ) + 1 − 3 n − 1 = 3

Dãy số này là cấp số cộng có công sai d= 3.

* Xét dãy số u n = 4 − 5 n .

Ta có: 

u n + 1 − u n = 4 −    5 ( n + 1 ) −     ( 4 − 5 n ) = − 5

Dãy số này là  cấp số cộng có công sai d =  -5

* Xét dãy số  u n = 2 n + 3 5

Ta có: 

u n + 1 − u n =    2 ( n + 1 ) + ​ 3 5 −    2 n + 3 5 = 2 5 .

Dãy (un) là cấp số cộng có công sai  d = 2 5

* Xét dãy số  u n = n + 1 n

Ta có:

u n + 1 − u n =    n + 1 + ​ 1 n + 1 −    n + 1 n =    ( n + ​ 2 ) . n − ( n + 1 ) 2 n . ( n + 1 ) = − 1 n ( n + 1 ) ⇒ ( u n )

 không là cấp số cộng

Bình luận (0)
HT
Xem chi tiết
NH
13 tháng 12 2019 lúc 23:08

Là D đó bạn

Bình luận (0)
 Khách vãng lai đã xóa
NG
14 tháng 12 2019 lúc 15:07

Đáp án là D

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 12 2019 lúc 17:10

D-3N nha

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DL
23 tháng 12 2017 lúc 21:43

Vì mình không biết đánh dấu chia hết ở đâu nên mình thay bằng dấu chia,mong bạn thông cảm.

a,    n+6:n+2

<=>(n+2)+4:n+2

mà n+2:n+2

<=>4:n+2

<=>n+2 =1 hoặc 2 hoặc 4

<=>n=0 hoặc 2(trường hợp n+2=1 k được vì n nguyên dương)

b,   2n+3:n-2

<=>n+(n-2)+5:n-2

mà n-2:n-2

<=>n+5:n-2

<=>(n-2)+7:n-2

mà n-2:n-2

<=>7:n-2(vì mình k có thời gian nên đến đây bạn tự làm nhé.n-2 thuộc Ư(7)sau đó tính n)

c,   3n+1:1n-3n

Câu này mình nghĩ là k tìm dc giá trị của n vì 1n làm sao trừ được 3n?(Thực ra là chưa học tới^^)

nhớ k cho mình nha

Bình luận (0)