x^2+1/x+x/x^2+1=-5/2
help me! thanks
(x-1)^2 = (2x-3)^2
help me
\(\Rightarrow\left(x-1\right)^2-\left(2x-3\right)^2=0\\ \Rightarrow\left(x-1-2x+3\right)\left(x-1+2x-3\right)=0\\ \Rightarrow\left(2-x\right)\left(3x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)
Nguyễn Hoàng Minh thank you
tìm cực trị:y=(1-x)^3(3x-8)^2
help me!!!
x^2 - 5x + 2 căn x +5 = 2
help meeeeeeeeee cần gấp ạ
1) x^2-3x-1
2) 3x^2-5x-2
help
1:Ta có: \(x^2-3x-1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{13}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
(2x-3)^2
(x+5)^2
help meee
Giải BPT
x+1/x-1+x-1/x+1>5/2
HELP ME
THANKS <3
Giải
\(\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{2\left(x+1\right)}{x^2-1}+\frac{2\left(x-1\right)}{x^2-1}=\frac{2\left(x+1\right)+2\left(x-1\right)}{x^2-1}\)
\(\frac{2\left(x+1+x-1\right)}{x^2-1}=\frac{2\left(2x\right)}{x^2-1}=\frac{4x}{x^2-1}\)
Tới đây bí rồi
tìm x, biết:
1,6 - |x - 0,2| = 0
|x + 4/15| - | - 3,75| = - | - 2,15|
2|3x - 1| + 1 = 5
help me please, đang gấp! thanks!!
giai pt x^2/3+48/x^2=5.(x/3+4/x)
help me ! thanks
Tính:
x+z+2/y=y+z+1/x=x+y-3=1/x+y+z
Please help me!!!
Thanks^^
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+y+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+y+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
Ta có :
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow y=\frac{5}{6}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
phải có 2 trường hợp
TH1 x+y+x=0
TH2 x+y+z khác 0 chứ