Những câu hỏi liên quan
H24
Xem chi tiết
NT
2 tháng 10 2021 lúc 21:33

Bài 1: 

a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)

c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)

 

Bình luận (0)
VH
Xem chi tiết
NT
22 tháng 1 2024 lúc 0:48

Bài 2:

a: \(\left(x-8\right)\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

=>\(4x-3-x-5=30-3x\)

=>3x-8=30-3x

=>6x=38

=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)

Do đó:HD<HC

Bình luận (0)
PL
Xem chi tiết
NT
31 tháng 12 2021 lúc 11:10

\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)

hay m=13

Bình luận (0)
PV
Xem chi tiết
H24
6 tháng 5 2021 lúc 9:48

Bài 2 

P(x) + Q(x) =  x3 – 6x + 2 + 2x2 - 4x3 + x - 5 =  - 3x+ 2x2 – 5x - 3 

P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x− 2x− 7x+7

Bình luận (0)
LA
17 tháng 6 2021 lúc 15:22

Bai 3

a)(x-8)(x3+8)=0

=>x-8=0 hoac x3+8=0

=>x   =8 hoac x3    =-8

=>x   =8 hoac x     =-2

Vậy x=8 hoặc x=-2

b)(4x-3)-(x+5)=3(10-x)

=>4x-3-x-5=30-3x

=>4x-x+3x=30+3+5

=>x(4-1+3)=38

=>6x         =38

=>x           =\(\dfrac{38}{6}\)

=>x           =\(\dfrac{19}{3}\)

Vậy x=\(\dfrac{19}{3}\)

 

Bình luận (0)
NV
Xem chi tiết
H24
24 tháng 5 2021 lúc 10:51

a) A+(x2-4xy2+2xz-3y2)=0

 ⇒ A = -x2+4xy2-2xz+3y2

         = -2x2+4xy2-2xz

còn câu b mik ko biết đa thức B là gì

Bình luận (0)
DT
Xem chi tiết
NT
23 tháng 10 2021 lúc 23:25

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)
PN
Xem chi tiết
H24
18 tháng 5 2022 lúc 7:48

a. M(x) + N(x) = 6x– 2x2 + 3x +10 - 6x3 + x2 – 6x -10

= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )

= -x2 - 3x 

M(x) - N(x) = 6x– 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)

= 6x– 2x2 + 3x +10 + 6x3 - x2 + 6x +10

= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)

= 12x3 - 3x2 + 9x + 20

b. Đặt -x2 - 3x  = 0

=> -x2 + (-3)x = 0

=> -x2 + 3.-x = 0

=> -x(-x+ 3) = 0

=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy nghiệm của đa thức trên là 0 hoặc -3

Bình luận (0)
N7
18 tháng 5 2022 lúc 7:49

a) M(X) + N(x)= (6x– 2x2 + 3x +10)

+ (–6x3 + x2 – 6x -10)

M(x) + N(x)=  – x2 - 3x.

M(x) + N(x)= (6x– 2x2 + 3x +10)

- (–6x3 + x2 – 6x -10)

M(x) - N(x)= 12x3 - x2 + 9x + 20.

b) Nghiệm của M(x) + N(x)= x= 0, -3.

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 10 2021 lúc 22:03

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

Bình luận (0)
H24
18 tháng 10 2021 lúc 17:47

ỳtct7ct7c7c7t79tc9

 

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 12 2023 lúc 19:07

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

Bình luận (1)
NT
4 tháng 12 2023 lúc 23:21

Bài 16:

a: \(\left(x+5\right)\left(y-3\right)=15\)

=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)

=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)

b: x là số tự nhiên

=>2x-1 lẻ và 2x-1>=-1

\(\left(2x-1\right)\left(y+2\right)=24\)

mà 2x-1>=-1 và 2x-1 lẻ

nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)

=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)

=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)

c:

x,y là các số tự nhiên

=>x+3>=3 và y+2>=2

xy+2x+3y=0

=>\(xy+2x+3y+6=6\)

=>\(x\left(y+2\right)+3\left(y+2\right)=6\)

=>\(\left(x+3\right)\left(y+2\right)=6\)

mà x+3>=3 và y+2>=2

nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)

=>x=0 và y=0

d: xy+x+y=30

=>\(xy+x+y+1=31\)

=>\(x\left(y+1\right)+\left(y+1\right)=31\)

=>\(\left(x+1\right)\left(y+1\right)=31\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)

=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)

Bình luận (0)