tìm nghiệm đa thức sau: x^2-4x+3
Tìm nghiệm đa thức sau A(x) =\(x^2-4x+3\)
nghiệm đa thức ấy bằng 3 ạ
\(A\left(x\right)=x^2-4x+3\\ A\left(x\right)=x^2-x-3x+3\\ A\left(x\right)=x\left(x-1\right)-3\left(x-1\right)\\ A\left(x\right)=\left(x-1\right)\left(x-3\right)\)
Để đa thức A(x) có nghiệm thì \(A\left(x\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy nghiệm của đa thức A(x) là \(x\in\left\{1;3\right\}\)
Tìm nghiệm của đa thức sau A (x) = \(x^2-4x+3\)
No của đa thức trên bằng 3 nhé bạn
Để A(x) có nghiệm thì A(x) = 0
Hay: \(x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy...
x2-4x+3=0
\(x^2-x-3x+3\)=0
\(x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-3\right)=0\)
=> x-1=0 => x=1
hoặc x-3=0 => x=3
bài9: chứng tỏ các đa thức sau ko có nghiệm
b) x^2 - 5x + 31
c-x^2 - 12x - 45
d) x^2 - 4x + 26
bài4:tìm nghiệm của đa thức sau
d) x^3 - 19x^2
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
Tìm nghiệm đa thức sau: (4x-3)(5+x)
x2 -2
a) (4x-3)(5+x)=0
=>4x-3=0 hoặc 5+x=0
=>x=3/4 hoặc x=-5
b)x2 -2=0
=>x2=2
=>x=±\(\sqrt{2}\)
Giup vs: tìm nghiệm của đa thức sau: x^4-4x^2+3
Tìm nghiệm của đa thức sau :
Q(x)= x2 - 4x + 3
Ta co: Q(x)=x2-4x+3 = x2-4x+4-1 = (x-2)2-1
Cho Q(x)=(x-2)2-1=0
=> (x-2)2=1
=> x-2 = 1 hoac -1
=> x=3 hoac x=1
Ta co cach giai khac: Q(x)=x2-4x+3 = x2-x + 3-3x = x(x-1) -3(x-1) = (x-3)(x-1) = 0 => x=3 hoac x=1
chứng tỏ đa thức sau không có nghiệm: A(x)= x2-4x+7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Tìm nghiệm của hai đa thức sau
x2 - 2 ; (4x - 3 ).(5 + x)
Xét \(x^2-2=0\)
\(\Rightarrow x^2=0+2\)
\(\Rightarrow x^2=2\)
\(\Rightarrow\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)là nghiệm của đa thức \(x^2-2\)
b ) Xét \(\left(4x-3\right)\left(5+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)là nghiệm của đa thức \(\left(4x-3\right)\left(5+x\right)\)
Chúc bạn học tốt !!!
+ x2 - 2
Ta có \(f\left(x\right)=x^2-2\)
Khi f (x) = 0
=> \(x^2-2=0\)
=> \(x^2=2\)
=> \(x=\pm\sqrt{2}\)
Vậy f (x) có 2 nghiệm: x1 = \(\sqrt{2}\); x2 = \(-\sqrt{2}\).
+ (4x - 3) (5 + x)
Ta có \(g\left(x\right)=\left(4x-3\right)\left(5+x\right)\)
Khi g (x) = 0
=> \(\left(4x-3\right)\left(5+x\right)=0\)
=> \(\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)=> \(\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy đa thức f (x) có 2 nghiệm: x1 = \(\frac{3}{4}\); x2 = -5.
Tìm nghiệm của đa thức sau :
g(x) = (x-3).(16-4x)
Giups mình với, cảm ơn nhiều. (Toán lớp 7 nhé, tìm nghiệm của đa thức)
g(x) = ( x - 3 ) x ( 16 - 4x )
Ơ đay xẽ xảy ra hai trương hợp :
+) ( x - 3 ) = 0
x = 0 + 3
x = 3
+) ( 16 - 4x ) = 0
4x = 16 - 0
4x = 16
x = 16 : 4
x = 4
Đúng nha Hero chibi
g(x) = (x-3).(16-4x)=0
<=> x-3 = 0 hoac 16-4x= 0
=> x= 3 hoac x= 4