Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NL
Xem chi tiết
XO
26 tháng 10 2019 lúc 15:12

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
XO
26 tháng 10 2019 lúc 15:32

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

Bình luận (0)
 Khách vãng lai đã xóa
KK
9 tháng 3 2020 lúc 20:48

cs ng làm đung r

đag định lm

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
H24
11 tháng 3 2021 lúc 22:43

undefined

Bình luận (0)
ER
Xem chi tiết
TH
5 tháng 3 2020 lúc 21:06

\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)

\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)

\(-6B=\left(-5\right)^{2017}-1\)

\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)

Bình luận (0)
 Khách vãng lai đã xóa

Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017

          (-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018

              (-4)B = (-5)^0- (-5)^2018

           B = 1 - (-5)^2018 / (-4)

Nếu có sai sót gì mong các bạn bỏ qua

Bình luận (0)
 Khách vãng lai đã xóa

\(-5B=\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2018}\)

\(-4B=\left(-5\right)^{2018}-\left(-5\right)^0\)

\(\Rightarrow B=\frac{\left(-5\right)^{2018}-\left(-5\right)^0}{-4}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
26 tháng 11 2021 lúc 20:20

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

Bình luận (0)
NM
26 tháng 11 2021 lúc 20:32

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

Bình luận (0)
NM
26 tháng 11 2021 lúc 20:44

d.

\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)

Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì

\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)

Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)

Vậy \(\left(a;b\right)=\left(9;4\right)\)

Bình luận (0)
JP
Xem chi tiết
NT
23 tháng 1 2024 lúc 19:51

a: \(\left(\sqrt{3}\right)^x=243\)

=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)

=>\(\dfrac{1}{2}\cdot x=5\)

=>x=10

b: \(0,1^x=1000\)

=>\(\left(\dfrac{1}{10}\right)^x=1000\)

=>\(10^{-x}=10^3\)

=>-x=3

=>x=-3

c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)

=>\(\left(0,2\right)^{x+3}< 0,2\)

=>x+3>1

=>x>-2

d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)

=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)

=>2x+1<-2

=>2x<-3

=>\(x< -\dfrac{3}{2}\)

e: \(5^{x-1}+5^{x+2}=3\)

=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)

=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)

=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)

Bình luận (0)
TP
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
Me
1 tháng 12 2019 lúc 20:28

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

Bình luận (0)
 Khách vãng lai đã xóa
Me
1 tháng 12 2019 lúc 21:00

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Me
1 tháng 12 2019 lúc 21:05

Đợi tí mình làm câu a cho 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết