Những câu hỏi liên quan
KD
Xem chi tiết
NC
24 tháng 1 2019 lúc 10:31

Giả sử có ít nhất một số là số vô tỉ, giả sử đó là \(\sqrt{a}\)

Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ

=> Đặt \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{p}{q}\)với p, q thuộc Z và (p, q)=1

=> \(\sqrt{b}+\sqrt{c}=\frac{p}{q}-\sqrt{a}\)

=> \(b+2\sqrt{bc}+c=\frac{p^2}{q^2}-2\frac{p}{q}\sqrt{a}+a\Leftrightarrow2\sqrt{bc}+\frac{2p}{q}\sqrt{a}=\frac{p^2}{q^2}+a-b-c\)

=> \(2\sqrt{bc}+\frac{2p}{q}\sqrt{a}\)là số hữu tỉ

=> \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)là số hữu tỉ

=> Đặt \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)=\(\frac{m}{n}\)với m,n thuộc Z, (m, n)=1

=> \(\sqrt{bc}=\frac{m}{n}-\frac{p}{q}\sqrt{a}\Rightarrow bc=\frac{m^2}{n^2}-\frac{2mp}{nq}\sqrt{a}+\frac{p^2}{q^2}.a\)

=> \(\frac{2mp}{nq}\sqrt{a}=\frac{m^2}{n^2}+\frac{p^2.a}{q^2}-bc\)

=>\(\frac{2mp}{nq}\sqrt{a}\)là số hữu tỉ 

=> \(\sqrt{a}\)là số hữu tỉ  vô lí với điều giả sử

=> Không có số nào là số vô tỉ hay cả ba số là số hữu tỉ

Bình luận (0)
H24
24 tháng 3 2019 lúc 8:04

Không biết cách này có đúng không ạ?Em làm thử

                                       Lời giải

Từ đề bài suy ra a,b,c>0.

Ta chứng minh: Nếu a;b;c và \(\sqrt{a};\sqrt{b};\sqrt{c}\) là số hữu tỉ.Suy ra \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) (là bình phương của 1 số hữu tỉ).Thật vậy,giả sử: \(a=\frac{m}{n};b=\frac{p}{q};c=\frac{t}{f}\) (không là bình phương của một số hữu tỉ)

Thế thì: \(\sqrt{a}=\sqrt{\frac{m}{n}};\sqrt{b}=\sqrt{\frac{p}{q}};\sqrt{c}=\sqrt{\frac{t}{f}}\).Suy ra

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{m}{n}}+\sqrt{\frac{p}{q}}+\sqrt{\frac{t}{f}}\) là số vô tỉ,trái với giả thiết.

Do đó \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) suy ra \(\sqrt{a}=\frac{m}{n};\sqrt{b}=\frac{p}{q};\sqrt{c}=\frac{t}{f}\) là các số hữu tỉ (đpcm)

Bình luận (0)
H24
24 tháng 3 2019 lúc 8:05

Chỗ đầu nhầm tí: Nếu a;b;c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ.Suy ra....

Bình luận (0)
NN
Xem chi tiết
HT
16 tháng 5 2016 lúc 15:07

mik làm ở trên rồi

nha: 0 11

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
H24
5 tháng 7 2023 lúc 17:09

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)

Bình luận (0)
GD
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 6 2021 lúc 11:45

Cả 3 đều đúng

Bình luận (0)
H24
24 tháng 6 2021 lúc 11:48

cả 3 nha

Bình luận (1)
DP
Xem chi tiết
NT
Xem chi tiết
NC
24 tháng 1 2019 lúc 10:35

Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!

Bình luận (0)