Chứng minh rằng nếu a,b,c và √a+√b+√c là các số hữu tỉ thì √a,√b,√c cũng là các số hữa tỉ
Chứng minh rằng nếu a,b,c và √a+√b+√c là các số hữu tỉ thì √a,√b,√c cũng là các số hữa tỉ
Giả sử có ít nhất một số là số vô tỉ, giả sử đó là \(\sqrt{a}\)
Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ
=> Đặt \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{p}{q}\)với p, q thuộc Z và (p, q)=1
=> \(\sqrt{b}+\sqrt{c}=\frac{p}{q}-\sqrt{a}\)
=> \(b+2\sqrt{bc}+c=\frac{p^2}{q^2}-2\frac{p}{q}\sqrt{a}+a\Leftrightarrow2\sqrt{bc}+\frac{2p}{q}\sqrt{a}=\frac{p^2}{q^2}+a-b-c\)
=> \(2\sqrt{bc}+\frac{2p}{q}\sqrt{a}\)là số hữu tỉ
=> \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)là số hữu tỉ
=> Đặt \(\sqrt{bc}+\frac{p}{q}\sqrt{a}\)=\(\frac{m}{n}\)với m,n thuộc Z, (m, n)=1
=> \(\sqrt{bc}=\frac{m}{n}-\frac{p}{q}\sqrt{a}\Rightarrow bc=\frac{m^2}{n^2}-\frac{2mp}{nq}\sqrt{a}+\frac{p^2}{q^2}.a\)
=> \(\frac{2mp}{nq}\sqrt{a}=\frac{m^2}{n^2}+\frac{p^2.a}{q^2}-bc\)
=>\(\frac{2mp}{nq}\sqrt{a}\)là số hữu tỉ
=> \(\sqrt{a}\)là số hữu tỉ vô lí với điều giả sử
=> Không có số nào là số vô tỉ hay cả ba số là số hữu tỉ
Không biết cách này có đúng không ạ?Em làm thử
Lời giải
Từ đề bài suy ra a,b,c>0.
Ta chứng minh: Nếu a;b;c và \(\sqrt{a};\sqrt{b};\sqrt{c}\) là số hữu tỉ.Suy ra \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) (là bình phương của 1 số hữu tỉ).Thật vậy,giả sử: \(a=\frac{m}{n};b=\frac{p}{q};c=\frac{t}{f}\) (không là bình phương của một số hữu tỉ)
Thế thì: \(\sqrt{a}=\sqrt{\frac{m}{n}};\sqrt{b}=\sqrt{\frac{p}{q}};\sqrt{c}=\sqrt{\frac{t}{f}}\).Suy ra
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{m}{n}}+\sqrt{\frac{p}{q}}+\sqrt{\frac{t}{f}}\) là số vô tỉ,trái với giả thiết.
Do đó \(a=\frac{m^2}{n^2};b=\frac{p^2}{q^2};c=\frac{t^2}{f^2}\) suy ra \(\sqrt{a}=\frac{m}{n};\sqrt{b}=\frac{p}{q};\sqrt{c}=\frac{t}{f}\) là các số hữu tỉ (đpcm)
Chỗ đầu nhầm tí: Nếu a;b;c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ.Suy ra....
Chứng minh rằng nếu a,b,c là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) cũng là các số hữa tỉ
Chứng minh rằng nếu a, b, c và căn a+căn b+căn c là các số hữu tỉ thì căn a, căn b, căn c cũng là các số hữu tỉ
GỈA HỘ VỚI CÁC BẠN!
Chứng minh rằng nếu a; b; c là các số hữu tỉ thì\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ
Cho các số thực a,b,c thỏa mãn a + b, b + c, c + a đều là các số hữu tỉ. Chứng minh rằng a, b, c là các số hữu tỉ
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
Chứng minh √7 là số vô tỉ.
Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Trong các câu sau đây, câu nào đúng, câu nào sai ?
a) Nếu a là số nguyên tố thì a cũng là số thực;
b) Chỉ có số 0 không là số hữu tỉ dương và cũng không là số hữu tỉ âm;
c) Nếu a là số tự nhiên thì a không phải là số vô tỉ.
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)
Chứng minh rằng nếu a, b, c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!