Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 7 2019 lúc 6:22

+ Tìm điều kiện xác định:

Biểu thức xác định khi tất cả các phân thức đều xác định.

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 – 10x ≠ 0

⇔ x(x – 10) ≠ 0

⇔ x ≠ 0 và x – 10 ≠ 0

⇔ x ≠ 0 và x ≠ 10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 + 10x ≠ 0

⇔ x(x + 10) ≠ 0

⇔ x ≠ 0 và x + 10 ≠ 0

⇔ x ≠ 0 và x ≠ -10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 luôn xác định vì x2 + 4 > 0 với mọi x ∈ R.

Vậy điều kiện xác định của biểu thức là x ≠ 0 và x ≠ ±10

+ Rút gọn biểu thức:

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Tại x = 20040, giá trị biểu thức bằng Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

Bình luận (0)
H24
Xem chi tiết
NT
26 tháng 12 2021 lúc 23:09

a: ĐKXĐ: \(x\notin\left\{0;10;-10\right\}\)

Bình luận (0)
SK
Xem chi tiết
TM
21 tháng 4 2017 lúc 11:59

x2−10x=x(x−10)≠0 khi x≠0;x−10≠0

Hay x≠0;x≠10

x2+10x=x(x+10)≠0 khi x≠0;x+10≠0

Hay x≠0;x≠−10

x2+4≥4

Vậy điều kiện của biến x để biểu thức đã cho được xác định là

x≠−10,x≠0,x≠10

Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :

(5x+2x2−10x+5x−2x2+10x).x2−100x2+4

=

Bình luận (0)
KV
23 tháng 11 2018 lúc 19:38

ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0

<=> x khác 0 và x khác +-10.

\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)

= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)

= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)

= \(\dfrac{10x^2+40}{x(x^2+4)}\)

= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)

= \(\dfrac{10}{x}\)

Thay x = 20040 vào biểu thức, ta có:

\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 12 2021 lúc 20:08

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

Bình luận (0)
HA
Xem chi tiết
TM
26 tháng 1 2022 lúc 8:11

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 13:13

a) Tìm được x -6 và x  ≠  0.

b) Gợi ý: x 3  + 4 x 2  - 6x + 36 = (x + 6) ( x 2  - 2x + 6)

Tìm được  P = x 2 − 2 x + 6 2 x

c) Ta có P = 3 2 ⇔ x 2 − 5 x + 6 = 0 . Từ đó tìm được x = 2 hoặc x = 3 (TMĐK).

d) Tương tự câu c, tìm được x = -6 (KTM) hoặc x = -1 (TM)

e) P = 1 Þ  x 2 ‑ - 4x + 6=  0 Û ( x -   2 ) 2 + 2 = 0 (vô nghiệm)

Vì  ( x -   2 ) 2  + 2 2 > 0 với mọi x. Do vậy x ∈ ∅ .

Bình luận (0)
TK
Xem chi tiết
MT
13 tháng 1 2016 lúc 13:55

a) ĐKXĐ:

x2-10x khác 0 và x2+10x khác 0

=>x.(x-10) khác 0 và x.(x+1) khác 0

=>x khác 0 và x khác 10 ;-10

b)\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)

\(=\frac{5x+2}{x^2-10x}.\frac{x^2-100}{x^2+4}+\frac{5x-2}{x^2+10x}.\frac{x^2-100}{x^2+4}\)

\(=\frac{5x+2}{x.\left(x-10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}+\frac{5x-2}{x.\left(x+10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)

\(=\frac{\left(5x+2\right).\left(x+10\right)}{x.\left(x^2+4\right)}+\frac{\left(5x-2\right).\left(x-10\right)}{x.\left(x^2+4\right)}\)

\(=\frac{5x^2+52x+20+5x^2-52x+20}{x.\left(x^2+4\right)}=\frac{10x^2+40}{x.\left(x^2+4\right)}=\frac{10.\left(x^2+4\right)}{x.\left(x^2+4\right)}=\frac{10}{x}\)

Để A=20040 thì:

10/x=20040

=>x=1/2004

Bình luận (0)
PN
Xem chi tiết
HT
Xem chi tiết
NT
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

Bình luận (0)
H24
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

Bình luận (0)
H24
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Bình luận (0)