CMR (x-y)^3+(y-z)^3+(z-x)^3 chia hết cho 6
Cho các số nguyên x, y, z thỏa x + y + z chia hết cho 6. CMR x3 + y3 + z3 chia hết cho 6
Lời giải:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
lẻ 1 số chẵn, 3 số chẵn
Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$
Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn
$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.
$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$
Vậy $(x+y)(y+z)(x+z)\vdots 2$
$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$
Mà $x+y+z\vdots 6$
$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$
Cho 3 số nguyên x,y,z có tổng chia hết cho 6
Cmr: Biểu thức M=(x+y)(y+z)(z+x)-2xyz chia hết cho 6
(x+y)(y+z)(z+x)-2xyz
⇒(x+y+z)-z(x+y+z)-x(x+y+z)-y-2xyz
⇒(x+y+z)nhân-(x+y+z)-2xyz
⇒6(-6)-2xyz⋮6
⇒(x+y)(y+z)(z+x)-2xyz⋮6
cho 3 số x y z thỏa mãn x^3+y^3+z^3 chia hết cho 7 hãy cmr tồn tại 1 số x y z chia hết cho 7
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Câu :
1, Cho A = (x+y+z)3-x3-y3-z3 với x,y,z thuộc Z
CMR: A chia hết cho 6
Tương tự: Câu hỏi của Nguyễn Thị Kim Anh - Toán lớp 8 | Học trực tuyến
a, Cho x2 + y2 + z2 + 3 = 2(x + y + z). CMR x = y = z = 1
b, CMR 20053 + 125 chia hết cho 2010
c, CMR x6 - 1 chia hết cho x + 1 và x - 1
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)
\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)
b) \(2005^3+125\)
\(=2005^3+5^3\)
\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010
Vậy \(2005^3+125\) chia hết cho 2010
c) \(x^6-1\)
\(=\left(x^3\right)^2-1^2\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\) \(⋮\) \(\left(x-1\right)\) và \(\left(x+1\right)\)
Vậy \(x^6-1\) chia hết cho \(\left(x-1\right)\) và \(\left(x+1\right)\)
Cho các số nguyên x,y,z thỏa mãn x+y+z=(x-y)(y-z)(z-x)
CMR M= (x-y)^3+(y-z)^3+(z-x)^3 chia hết cho 81
Đag cần gấp ạ
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
1. Cho p>3 và p là số nguyên tố. CMR:(p-1).(p+1) chia hết cho 24.
2. Cho x, y, z thuộc Z và (x-y).(y-z).(z-x)=x+y+z
CMR: (x+y+z)chia hết cho 27
Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2)
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24
Cho 3 số chính phương x, y, z. CMR: (x - y)(y - z)(z - x) chia hết cho 12
bài này bạn giải rồi mà
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Cậu lấy trong quyển Toán nâng cao nào vậy ?