Phép nhân và phép chia các đa thức

CT

a, Cho x2 + y2 + z2 + 3 = 2(x + y + z). CMR x = y = z = 1

b, CMR 20053 + 125 chia hết cho 2010

c, CMR x6 - 1 chia hết cho x + 1 và x - 1

MV
29 tháng 10 2017 lúc 17:39

\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)

\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)

Bình luận (0)
AB
29 tháng 10 2017 lúc 17:39

b) \(2005^3+125\)

\(=2005^3+5^3\)

\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010

Vậy \(2005^3+125\) chia hết cho 2010

Bình luận (0)
AB
29 tháng 10 2017 lúc 17:45

c) \(x^6-1\)

\(=\left(x^3\right)^2-1^2\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\) \(⋮\) \(\left(x-1\right)\)\(\left(x+1\right)\)

Vậy \(x^6-1\) chia hết cho \(\left(x-1\right)\)\(\left(x+1\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
CC
Xem chi tiết
PT
Xem chi tiết
PB
Xem chi tiết
MP
Xem chi tiết
LP
Xem chi tiết
PL
Xem chi tiết