chứng minh rằng đa thức: x^2-3x+12 vô nghiệm với mọi x
chứng minh rằng đa thức E(x) = (-x+1) + (x+2)^2 - 6x + 4 vô nghiệm
không biết làm thế nào cả, nhờ mọi người giúp với
chứng minh đa thức vô nghiệm -3x^2+x-2
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)
\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
=> Phương trình luôn vô nghiệm
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
chứng minh đa thức x2-3x+3 vô nghiệm
x^2 - 3x + 3
=x^2 - 1,5x - 1,5x + 2,25+0,75
=x(x-1,5)-1,5(x-1,5)+0,75
=(x-1,5)^2 + 0,75 >= 0,75 => vô nghiệm
Bài 1:Cho đa thức f(x) xác định với mọi x thỏa mãn :x.f(x+2)=(x2-9).f(x). Chứng minh rằng f(x) có ít nhất 3 nghiệm
Bài 2: Tìm nghiệm của đa thức: h(x)=x3 +3x2+3x+1
Bài 2:
Đặt H(x)=0
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
Chứng minh rằng đa thức f(x)= x^2-x-1 vô nghiệm
Chứng minh rằng đa thức sau vô nghiệm f(x) = x^2 - x - x + 2
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
chứng minh rằng đa thức h(x)=x^2+10x+30 vô nghiệm
\(h\left(x\right)=x^2+2.x.5+5^2+5=\left(x+5\right)^2+5>0\text{ với mọi }x\in R.\)
chứng minh rằng đa thức -x2+x-1 vô nghiệm
-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai