Những câu hỏi liên quan
TT
Xem chi tiết
CP
7 tháng 7 2015 lúc 10:09


=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 
 

Bình luận (0)
TT
Xem chi tiết
HN
Xem chi tiết
NK
23 tháng 11 2016 lúc 20:43

7777 mũ 7777 chia hết cho 7

Bình luận (0)
HN
24 tháng 11 2016 lúc 20:21

Xl bn nhưng mk k hỉu lém 

Bình luận (0)
NN
Xem chi tiết
SG
15 tháng 10 2016 lúc 22:23

Ta có:

\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)

\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)

Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)

Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)

\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)

\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)

hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)

 

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
NN
23 tháng 11 2016 lúc 20:01

ko thuc hien duoc

Bình luận (0)
RT
Xem chi tiết
OO
4 tháng 9 2015 lúc 15:14

=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 

Bình luận (0)
LV
Xem chi tiết
CT
Xem chi tiết
CT
4 tháng 8 2015 lúc 19:51

  2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 

5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 

vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

Bình luận (0)
WG
30 tháng 12 2016 lúc 21:04

viết dấu đồng quy ở đâu zậy bn

Bình luận (0)
DH
27 tháng 10 2024 lúc 19:37

 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 

5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 

vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

   
Bình luận (0)