Đại số lớp 6

NN

CMR: 22225555 + 55552222 chia hết cho 7 (dùng đồng dư mod)

SG
15 tháng 10 2016 lúc 22:23

Ta có:

\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)

\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)

Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)

Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)

\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)

\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)

hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
KG
Xem chi tiết
LH
Xem chi tiết
KG
Xem chi tiết
KG
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết