Chứng minh K là trung điểm của EF
Bài 5. (3,5 điểm) Cho tam giác DEF có DE = DF. Gọi M là trung điểm của EF. a. Chứng minh: ∆DME = ∆DMF ///b. Chứng minh: DM EF //c. Vẽ H là trung điểm DF. Trên tia đối của tia HE lấy điểm P sao cho HE = HP. Chứng minh: DP//EF d) Vẽ K là trung điểm DE. Trên tia đối của tia KF lấy điểm Q sao cho KF = KQ. Chứng minh 3 điểm P, D, Q thẳng hàng và D là trung điểm
mình đang cần gấp giúp mình nha cảm ơn!
a: Xét ΔDME và ΔDMF có
DM chung
ME=MF
DE=DF
Do đó: ΔDME=ΔDMF
Bài 5. (3,5 điểm) Cho tam giác DEF có DE = DF. Gọi M là trung điểm của EF. a. Chứng minh: ∆DME = ∆DMF b. Chứng minh: DM EF c. Vẽ H là trung điểm DF. Trên tia đối của tia HE lấy điểm P sao cho HE = HP. Chứng minh: DP//EF d. Vẽ K là trung điểm DE. Trên tia đối của tia KF lấy điểm Q sao cho KF = KQ. Chứng minh 3 điểm P, D, Q thẳng hàng và D là trung điểm QP. nhanh nha mình cần gấp cảm ơn
a: Xét ΔDME và ΔDMF có
DM chung
ME=MF
DE=DF
Do đó: ΔDME=ΔDMF
cho tam giác DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE và DF,kẻ DH vuông góc với EF tại H.
A)chứng minh HE = HF
B)cho DE =DF = 5cm,EF = 6cm.Tính độ dài đoạn DH
C)chứng minh DEM = DFN
D)gọi K là trung điểm của MN. Chứng minh ba điểm D,K,H cùng nằm trên 1 đường thẳng
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại K. Gọi I là trung điểm AH
1) Gọi M là trung điểm BC, kẻ đường kính AP. Chứng minh M là trung điểm của HP.
2) Chứng minh BH/BA + CH/CA = EF/KA.
3) Gọi S là giao điểm của hai đường thắng OI và MK. Chứng minh AS song song với BC.
1: góc ABP=1/2*sđ cung AP=90 độ
=>BP//CH
góc ACP=1/2*sđ cung AP=90 độ
=>CP//BH
mà BP//CH
nên BHCP là hình bình hành
=>BC cắt HP tại trung điểm của mỗi đường
=>M là trung điểm của HP
Cho tam giác DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE và DF kẻ DH vuông góc EF tại H.
a. Chứng minh: HE = HF
b. Cho DE = DF = 5cm; EF = 6cm. Tính DH?
c. Chứng minh Góc DEM = góc DFN?
d. Gọi K là trung điểm MN. Chứng minh: D, H, K thẳng hàng?
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF
hay EH=FH
b: EH=FH=EF/2=3(cm)
Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)
nên DH=4(cm)
c: Xét ΔDEM và ΔDFN có
DE=DF
\(\widehat{EDM}\) chung
DM=DN
Do đó: ΔDEM=ΔDFN
Suy ra: \(\widehat{DEM}=\widehat{DFN}\)
d: Xét ΔNEH và ΔMFH có
NE=MF
\(\widehat{E}=\widehat{F}\)
EH=FH
Do đó: ΔNEH=ΔMFH
Suy ra: HN=HM
hay H nằm trên đường trung trực của MN(1)
Ta có: KM=KN
nên K nằm trên đường trung trực của MN(2)
Ta có: DN=DM
nên D nằm trên đường trung trực của MN(3)
Từ (1), (2) và (3) suy ra D,H,K thẳng hàng
a. xét tam giác DHE và tam giác DHF, có:
D: góc chung
DE = DF ( DEF cân )
DH: cạnh chung
Vậy tam giác DHE = tam giác DHF ( c.g.c )
=> HE = HF ( 2 cạnh tương ứng )
b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm
áp dụng định lý pitago vào tam giác vuông DHE, có:
\(DE^2=DH^2+EH^2\)
\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
c.xét tam giác DEM và tam giác DFN có:
DE = DF ( DEF cân )
DM = DN ( gt )
D: góc chung
Vậy tam giác DEM = tam giác DFN ( c.g.c )
=> góc DEM = góc DFN ( 2 góc tương ứng )
d.xét tam giác DKM và tam giác DKN, có:
DM = DN ( gt )
D: góc chung
DK: cạnh chung
Vậy tam giác DKM = tam giác DKN ( c.g.c )
=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )
=> DK vuông BC
Mà DH cũng vuông BC
=> D,H,K thẳng hàng
Chúc bạn học tốt!!!
Cho tam giác ABC có ba góc nhọn. Vẽ . Vẽ tại I, vẽ tại K. Lấy E, F sao cho I là trung điểm của HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N.
a) Chứng minh và chu vi bằng EF
b) Chứng minh AE = AF
c) Nếu biết . Khi đó hãy tính các góc của tam giác
bạn bổ sung lại đề đi bạn
Cho tam giác ABC có AB = AC. M là trung điểm BC.
a) Chứng minh: tam giác MAB = tam giác MAC
b) Chừng minh AM là tia phân giác của góc BAC và AM vuông góc BC
c) Lấy điểm E trên AB, điểm F trên AC sao cho AE = AF. Gọi G là trung điểm EF. Chứng minh: 3 điểm A; G; M thẳng hàng.
d) Chứng minh: EF // BC
e) Trên tia EF lấy K sao cho EK = BC. Gọi I là giao điểm của BC và EK. Chứng minh: I vừa là trung điểm của EC vừa là trung điểm của BK
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
B)vi goc BAM =90 độ
MAC=90 độ
=>AM vuông góc voi BC
Cho đoạn thẳng EF, gọi I là trung điểm của EF. Trên đường trung trực của đoạn thẳng EF lấy D (D khác I) A chứng minh ∆DIE=∆DIF B Trên tia đối của ID lấy điểm K sao cho ID=IK Chứng minh DE//KF Vẽ cả hình và giải giúp tui vs nha :))
Cho hình thang ABCD (AB//CD) gọi E , F , K lần lượt là trung điểm của Ad , AC , BC a) Chứng minh EF//CD b) Chứng minh EK//CD c) Chứng minh ba điểm E,F,K thẳng hàng