Những câu hỏi liên quan
HH
Xem chi tiết
VH
7 tháng 7 2019 lúc 20:20

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

Bình luận (0)
VH
7 tháng 7 2019 lúc 20:28

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

Bình luận (0)
H24
8 tháng 7 2019 lúc 15:52

2)Đề sai. Sửa:

\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.

\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)

Vậy ....

Bình luận (1)
TH
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:27

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

Bình luận (0)
KL
Xem chi tiết
NL
1 tháng 11 2017 lúc 14:42

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

Bình luận (0)
NL
4 tháng 11 2017 lúc 13:40

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

Bình luận (0)
Xem chi tiết

ai làm đúng mk k cho

Bình luận (0)
 Khách vãng lai đã xóa
CX
9 tháng 3 2020 lúc 20:18

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

Bình luận (0)
 Khách vãng lai đã xóa
CX
9 tháng 3 2020 lúc 20:23

b) \(9-n⋮n-3\)

=) \(\left[9-n+\left(n-3\right)\right]⋮n-3\)

=) \(9-n+n-3\)\(⋮n-3\)

=) \(6⋮n-3\)

=) \(n-3\inƯ\left(6\right)=\left\{+-1;+-2;+-3;+-6\right\}\)

=) \(n\in\left\{2;4;5;1;0;6;9;-3\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
LB
5 tháng 2 2017 lúc 15:26

a) Ta có : n+7 \(⋮\)n+2

\(\Rightarrow\)n+2+5\(⋮\)n+2

mà n+2\(⋮\)n+2

\(\Rightarrow\)5\(⋮\)n+2

\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}

\(\Rightarrow n\in\){-7;-3;-1;2}

b,c,d tương tự

Bình luận (0)
TH
5 tháng 2 2017 lúc 15:32

giải hết ra giùm mk mk gấp lắm

cảm ơn bạn

Bình luận (0)
TT
Xem chi tiết
TD
2 tháng 3 2020 lúc 19:27

ta có : n+7 chia hết n+2

=> (n+2)+5 chia hết cho n+2

=> 5 chia hết n+2

=> n+2 c Ư (5) = { 1;5 }

+) n+2 = 1 => n=-1

+) n+2=5 => n=3

vậy n = -1 và n = 3

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 3 2020 lúc 19:33

Ta có:

\(n+7⋮n+2\)

\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)

Vì \(n+2⋮n+2\)

Để \(\left(n+2\right)+5⋮n+2\)

Thì \(5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa
NT
2 tháng 3 2020 lúc 19:40

3,\(n^2+n+17⋮n+1\)

\(=>n.\left(n+1\right)+17⋮n+1\)

Do \(n.\left(n+1\right)⋮n+1\)

\(=>17⋮n+1\)

\(=>n+1\inƯ\left(17\right)\)

\(=>n+1\in\left\{-17;-1;1;17\right\}\)

\(=>n\in\left\{-18;-2;0;16\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
LP
Xem chi tiết
H24
1 tháng 12 2019 lúc 19:21

\(n⋮n-2\\ \Rightarrow n-\left(n-2\right)⋮n-2\\ \Rightarrow2⋮n-2\\ \Rightarrow n-2\in\left\{1;2\right\}\\ \Rightarrow n\in\left\{3;4\right\}\)Vậy \(n\in\left\{3;4\right\}\)

\(n+7⋮n+1\\ \Rightarrow n+7-\left(n+1\right)⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow n\in\left\{0;1;2;5\right\}\)Vậy \(n\in\left\{0;1;2;5\right\}\)

\(21⋮2n+5\\ \Rightarrow2n+5\in\left\{1;3;7;21\right\}\\ \Rightarrow2n\in\left\{2;16\right\}\\ \Rightarrow n\in\left\{1;8\right\}\)Vậy \(n\in\left\{1;8\right\}\)

\(2n+7⋮2n+1\\ \Rightarrow2n+7-\left(2n+1\right)⋮2n+1\\ \Rightarrow6⋮2n+1\\ \Rightarrow2n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow2n\in\left\{0;1;2;5\right\}\\ \Rightarrow n\in\left\{0;1\right\}\)Vậy \(n\in\left\{0;1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
KY
Xem chi tiết
NT
Xem chi tiết