Giải pt bằng pp cộng đại số {x+y=3 {x+2y=5
Giải Pt sau bằng pp cộng đại số:{x+2y=4;3x+3y=1}
Lời giải:
$x+2y=4$
$3x+3y=1$
$\Rightarrow 3(x+2y)-(3x+3y)=4.3-1$
$\Leftrightarrow 3y=11$
$\Leftrightarrow y=\frac{11}{3}$
$x=4-2y=4-2.\frac{11}{3}=\frac{-10}{3}$
Vậy......
1)giải các hệ PT sau bằng pp cộng đại số:
a)\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
b)\(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\)
c)\(\hept{\begin{cases}\frac{2}{3}x+\frac{4}{3}y=1\\\frac{1}{2}x-\frac{3}{4}y=1\end{cases}}\)
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
a, \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
1. Giải hệ pt sau bằng cách cộng đại số
a,\(\left\{{}\begin{matrix}\sqrt{2}x+y=1\\x-\sqrt{3}y=3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\left(\sqrt{3}-2\right)x-2y=-1\\3x-\left(\sqrt{3}-1\right)y=1\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+2\sqrt{3}y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}\\6x+2y=-2\end{matrix}\right.-6x+12y=18}\)
Giải pt bằng pp thế {x-3y=-2 {2x+y=3
\(\begin{cases} x-3y=-2\\2x+y=3 \end{cases} <=> \begin{cases} x-3(3-2x)=-2\\y=3-2x \end{cases} <=> \begin{cases} 7x=7\\y=3-2x \end{cases} \\<=> \begin{cases} x=1\\y=3-2.1 \end{cases} <=>\begin{cases} x=1\\y=1 \end{cases}\)
Giải pt bằng phương pháp thế {x+y=3 {x+2y=5
\(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3+y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3-2\\y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy hpt có nghiệm (x;y) = (1;2)
Giả hpt bằng phương pháp cộng đại số:
a. 3x+5y=3
5x+2y=1
b.6(x+y)=8+2x-3y
5(x-y)=5+3x+2y
a, \(\left\{{}\begin{matrix}3x+5y=3\\5x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=6\\25x+10y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=3\\19x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{19}+5y=3\\x=\dfrac{-1}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{12}{19}\\x=\dfrac{-1}{19}\end{matrix}\right.\)
Vậy hpt có nghiệm (x;y)=(-1/19;12/19)
b, \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(x-y\right)=5+3x+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\5x-5y-3x-2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+9y=8\\2x-7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+9y=8\\4x-14y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}23y=-2\\2x-7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{23}\\x=\dfrac{101}{46}\end{matrix}\right.\)
Vậy hpt có nghiệm (x;y) = ( 101/46;-2/23)
Giải các hệ PT sau bằng phương pháp cộng đại số
a)\(\left\{{}\begin{matrix}\text{3x-2y=1}\\\text{ 2x+4y=3}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\text{4x-3y=1}\\\text{ -x+2y=1}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)
Giải hệ phương trình sau (bằng cách cộng đại số):
5/ \(\left\{{}\begin{matrix}\left(x-2\right)^2-2y^3=6\\3\left(x-2\right)^2+5y^3=7\end{matrix}\right.\)