Những câu hỏi liên quan
LM
Xem chi tiết
H24
6 tháng 5 2017 lúc 21:37

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

Bình luận (0)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
VB
Xem chi tiết
NT
27 tháng 7 2023 lúc 23:42

M=x^2*(-1)-y^2(x-y)+x^2-y^2+100

=-x^2+y^2+x^2-y^2+100

=100

Bình luận (0)
AP
Xem chi tiết
KL
24 tháng 3 2022 lúc 14:49

\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)

\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)

\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)

\(=\left(x^2-y^2\right).0+100\)

\(=100\)

Vậy \(M=100\)

Bình luận (0)
LL
Xem chi tiết
NH
Xem chi tiết
NL
12 tháng 8 2021 lúc 16:15

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
NL
12 tháng 12 2020 lúc 21:55

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

Bình luận (1)
ND
Xem chi tiết
NL
12 tháng 12 2020 lúc 21:56

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

Bình luận (2)