B = \(\dfrac{-1}{3}\) - \(\dfrac{1}{3^2}\) - \(\dfrac{1}{3^3}\) -...- \(\dfrac{1}{3^{20}}\)
a,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
b,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
c,\(23\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)-13\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)\)
d,1:\(\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
e,\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
Bài 1:
a) \(\left[\dfrac{3}{20}-\dfrac{1}{5}x\right].1\dfrac{2}{3}=1\dfrac{1}{4}\)
b)\(\dfrac{-2}{3}.x+\dfrac{1}{5}=\dfrac{3}{10}\)
c)\(\dfrac{-2}{3} \)-\(\dfrac{1}{3}\left(2x-7\right)=\dfrac{3}{2}\)
a) \(\left(\dfrac{3}{20}-\dfrac{1}{5}x\right)\cdot1\dfrac{2}{3}=1\dfrac{1}{4}\)
\(\left(\dfrac{3}{20}-\dfrac{1}{5}x\right)\cdot\dfrac{5}{3}=\dfrac{5}{4}\)
\(\dfrac{3}{20}-\dfrac{1}{5}x=\dfrac{5}{4}:\dfrac{5}{3}\\ \dfrac{3}{20}-\dfrac{1}{5}x=\dfrac{3}{4}\\ \dfrac{1}{5}x=\dfrac{3}{20}-\dfrac{3}{4}\\ \dfrac{1}{5}x=-\dfrac{3}{5}\\ x=-\dfrac{3}{5}:\dfrac{1}{5}\\ x=-3\)
b) \(\dfrac{-2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)
\(-\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{1}{5}\\ \dfrac{-2}{3}x=\dfrac{1}{10}\\ x=\dfrac{1}{10}:\dfrac{-2}{3}\\ x=-\dfrac{3}{20}\)
c) \(-\dfrac{2}{3}-\dfrac{1}{3}\left(2x-7\right)=\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-7\right)=-\dfrac{2}{3}-\dfrac{3}{2}\\ \dfrac{1}{3}\left(2x-7\right)=-\dfrac{13}{6}\\ 2x-7=-\dfrac{13}{6}:\dfrac{1}{3}\\ 2x-7=-\dfrac{13}{2}\\ 2x=-\dfrac{13}{2}+7\\ 2x=\dfrac{1}{2}\\ x=\dfrac{1}{4}\)
B = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{20}}\)
\(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{20}}\)
\(\Rightarrow\dfrac{1}{3}B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{21}}\)
\(\Rightarrow\dfrac{1}{3}B-B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{21}}-1-\dfrac{1}{3}-...-\dfrac{1}{3^{20}}\)
\(\Rightarrow\dfrac{-2}{3}B=\dfrac{1}{3^{21}}-1\)
\(\Rightarrow B=\left(\dfrac{1}{3^{21}}-1\right):\left(-\dfrac{2}{3}\right)\)
Thực hiện phép tính: a) \(11\dfrac{3}{4}-\left(6\dfrac{5}{6}-4\dfrac{1}{2}\right)+1\dfrac{2}{3}\)
b) \(2\dfrac{17}{20}-1\dfrac{11}{15}+6\dfrac{9}{20}:3\) c) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\)
d) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\)
a: =11+3/4-6-5/6+4+1/2+1+2/3
=10+9/12-10/12+6/12+8/12
=10+13/12=133/12
b: \(=2+\dfrac{17}{20}-1-\dfrac{11}{15}+2+\dfrac{3}{20}\)
=3-11/15
=34/15
c: \(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}=\dfrac{5}{7}\)
d: \(=\dfrac{29}{8}\cdot\dfrac{36}{29}\cdot\dfrac{15}{23}\cdot\dfrac{23}{5}=\dfrac{9}{2}\cdot3=\dfrac{27}{2}\)
\(A) x +\dfrac{1 }{3 } = \dfrac{2 }{5 }-\dfrac {(-1) }{3} B) \dfrac{5 }{8 } - x = \dfrac{-3 }{20 } - \dfrac{(-1 )}{6 }\)
\(a,x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{\left(-1\right)}{3}\)
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
\(x=\dfrac{2}{5}+\dfrac{1}{3}-\dfrac{1}{3}\)
\(x=\dfrac{2}{5}\)
\(---\)
\(b,\dfrac{5}{8}-x=\dfrac{-3}{20}-\dfrac{\left(-1\right)}{6}\)
\(\dfrac{5}{8}-x=\dfrac{-3}{20}+\dfrac{1}{6}\)
\(\dfrac{5}{8}-x=\dfrac{-9}{60}+\dfrac{10}{60}\)
\(\dfrac{5}{8}-x=\dfrac{1}{60}\)
\(x=\dfrac{5}{8}-\dfrac{1}{60}\)
\(x=\dfrac{75}{120}-\dfrac{2}{120}\)
\(x=\dfrac{73}{120}\)
#\(Toru\)
8) \(A=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
9) \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
10) \(P=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2005}}{\dfrac{2004}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+...+\dfrac{1}{2004}}\)
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
Rút gọn: \(\dfrac{1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+...+\dfrac{1}{3^{19}}-\dfrac{1}{3^{20}}\)
A=1/3-1/3^2+...-1/3^20
=>3A=1-1/3+...-1/3^19
=>4A=1-1/3^20
=>\(A=\dfrac{3^{20}-1}{3^{20}\cdot4}\)
Chứng minh: \(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}.\dfrac{4^3+1}{4^3-1}....\dfrac{9^3+1}{9^3-1}< \dfrac{3}{2}\)
\(B=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+....+\dfrac{1}{n!}< 1\)
\(C=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+....+\dfrac{n-1}{n!}< 1\)
D=\(\left(1-\dfrac{2}{6}\right)\left(1-\dfrac{2}{12}\right)\left(1-\dfrac{2}{20}\right)....\left(1-\dfrac{2}{n\left(n+1\right)}\right)>\dfrac{1}{3}\)
1.Tính nhanh:
A= \(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
2. Cho: B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\) .Hãy chứng tỏ rằng B > 1.
3. Rút gọn:
a) C= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{20}\right)\)
b) D= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
4. So sánh: E=\(\dfrac{20^{10}+1}{20^{10}-1}\) và F =\(\dfrac{20^{10}-1}{20^{10}-3}\)
5. Tính giá trị của biểu thức:
M= \(\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\)